Skip to main content
Log in

How risky is the optimal portfolio which maximizes the Sharpe ratio?

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the properties of the optimal portfolio in the sense of maximizing the Sharpe ratio (SR) and develop a procedure for the calculation of the risk of this portfolio. This is achieved by constructing an optimal portfolio which minimizes the Value-at-Risk (VaR) and at the same time coincides with the tangent (market) portfolio on the efficient frontier which is related to the SR portfolio. The resulting significance level of the minimum VaR portfolio is then used to determine the risk of both the market portfolio and the corresponding SR portfolio. However, the expression of this significance level depends on the unknown parameters which have to be estimated in practice. It leads to an estimator of the significance level whose distributional properties are investigated in detail. Based on these results, a confidence interval for the suggested risk measure of the SR portfolio is constructed and applied to real data. Both theoretical and empirical findings document that the SR portfolio is very risky since the corresponding significance level is smaller than 90 % in most of the considered cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The term “standardized univariate marginal distribution” describes the stochastic behaviour of each component of \(\mathbf {X}\). Following the properties of elliptically contoured distributions, linear combinations of \(\mathbf {X}\) have the same type of distribution as its components themselves.

  2. From the properties of elliptically contoured distribution we get that the distribution of \(\dfrac{X_{\mathbf {w}}-\mathbf {w}^\prime \varvec{\mu }}{\sqrt{\mathbf {w}^\prime \mathbf {D} \mathbf {w}}}\) is independent of the vector \(\mathbf {w}\).

References

  • Acerbi, C., Tasche, D.: Expected shortfall: a natural coherent alternative to value at risk. Econ. Notes 31, 379–388 (2002)

    Article  Google Scholar 

  • Alexander, G.J., Baptista, M.A.: Economic implication of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. J. Econ. Dyn. Control 26, 1159–1193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, G.J., Baptista, M.A.: A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Manag. Sci. 50, 1261–1273 (2004)

    Article  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Berk, J.B.: Necessary conditions for the CAPM. J. Econ. Theory 73, 245–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar, T., Schmid, W.: Mean-variance portfolio analysis under parameter uncertainty. Stat. Decis. 26, 179–201 (2008)

    MATH  Google Scholar 

  • Bodnar, T., Schmid, W., Zabolotskyy, T.: Statistical inference of the efficient frontier for dependent asset returns. Stat. Pap. 50, 593–604 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar, T., Schmid, W., Zabolotskyy, T.: Minimum VaR and minimum CVaR optimal portfolios: estimators, confidence regions, and tests. Stat. Risk Model. 29, 281–314 (2012)

  • Bodnar, T., Schmid, W., Zabolotskyy, T.: Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data. Metrika 76, 1105–1134 (2013)

  • Bodnar, T., Zabolotskyy, T.: Maximization of the Sharpe ratio of an asset portfolio in the context of risk minimization. Econ. Ann. XXI 11–12, 110–113 (2013)

    Google Scholar 

  • Campbell, R., Huisman, R., Koedijk, K.: Optimal portfolio selection in a value-at-risk framework. J. Bank. Finance 25, 1789–1804 (2001)

    Article  Google Scholar 

  • Chamberlain, G.A.: A characterization of the distributions that imply mean-variance utility functions. J. Econ. Theory 29, 185–201 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • DasGupta, A.: Asymptotic Theory of Statistics and Probability. Springer, New York (2008)

    MATH  Google Scholar 

  • Fang, K.T., Zhang, Y.T.: Generalized Multivariate Analysis. Springer/Science Press, Berlin/Beijing (1990)

    MATH  Google Scholar 

  • Gupta, A.K., Varga, T., Bodnar, T.: Elliptically Contoured Models in Statistics and Portfolio Theory. Springer, New York (2013)

    Book  MATH  Google Scholar 

  • Harville, D.A.: Matrix algebra from a statistician’s perspective. Springer, New York (1997)

  • Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2. Wiley, New York (1995)

    MATH  Google Scholar 

  • Jorion, Ph: Value at Risk: The New Benchmark for Controlling Market Risk. McGraw-Hill, New York (1997)

    Google Scholar 

  • Kilianová, S., Pflug, G.Ch.: Optimal pension fund management under multi-period risk minimization. Ann. Oper. Res. 166, 261–270 (2009)

  • Krokhmal, P., Zabarankin, M., Uryasev, S.: Modeling and optimization of risk. Surv. Oper. Res. Manag. Sci. 16, 49–66 (2011)

    Google Scholar 

  • Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York (2005)

    MATH  Google Scholar 

  • Luenberger, D.: Investment Science. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  • Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  • Merton, R.C.: An analytical derivation of the efficient portfolio frontier. J. Financ. Quant. Anal. 7, 1851–1872 (1972)

    Article  Google Scholar 

  • Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  • Okhrin, Y., Schmid, W.: Distributional properties of optimal portfolio weights. J. Econ. 134, 235–256 (2006)

    Article  MATH  Google Scholar 

  • Owen, J., Rabinovitch, R.: On the class of elliptical distributions and their applications to the theory of portfolio choice. J. Finance 38, 745–752 (1983)

    Article  Google Scholar 

  • Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

  • Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Optimality conditions in portfolio analysis with general deviation measures. Math. Program. Ser. B 108, 515–540 (2006a)

  • Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Master funds in portfolio analysis with general deviation measures. J. Bank. Finance 30, 743–778 (2006b)

    Article  MATH  Google Scholar 

  • Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Generalized deviations in risk analysis. Finance Stoch. 10, 51–74 (2006c)

  • Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Equilibrium with investors using a diversity of deviation measures. J. Bank. Finance 31, 3251–3268 (2007)

    Article  Google Scholar 

  • Schmid, W., Zabolotskyy, T.: On the existence of unbiased estimators for the portfolio weights. AStA Adv. Stat. Anal. 92, 29–34 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharpe, W.F.: Mutual fund performance. J. Bus. 39, 119–138 (1966)

    Article  Google Scholar 

  • Sharpe, W.F.: The Sharpe ratio. J. Portfolio Manag. 21, 49–58 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Professor Göran Kauermann, the Associate Editor, and two anonymous Reviewers for careful reading of the paper and for their suggestions which have improved an earlier version of this paper. T. Bodnar was partly supported by the German Science Foundation (DFG) via the Research Unit 1735 “Structural Inference in Statistics: Adaptation and Efficiency”. He also appreciates the financial support of the German Science Foundation (DFG) via the projects BO 3521/3-1 and SCHM 859/13-1 “Bayesian Estimation of the Multi-Period Optimal Portfolio Weights and Risk Measures”. T. Zabolotskyy is thankful for the financial support of the European Commission via ERASMUS MUNDUS Action 2 HERMES project 2013-2596/001-001-EMA2 “Statistical analysis of optimal portfolios”. We thank David Bauder for his comments used in the preparation of the revised version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Bodnar.

Appendix

Appendix

Proof of Theorem 2

From Theorem 1.2.18 of Muirhead (1982) and Theorem 3.15 of Gupta et al. (2013), we get

$$\begin{aligned} \sqrt{n}\left( \begin{array}{c} \hat{\varvec{\mu }}-\varvec{\mu }\\ \text{ vech }(\hat{\varvec{\Sigma }})-\text{ vech }(\varvec{\Sigma })\\ \end{array} \right) \mathop {\longrightarrow }\limits ^{d} \mathcal {N}\left( \mathbf {0},\mathbf {\Omega }\right) \end{aligned}$$

as \(n \longrightarrow \infty \) where the symbol \(\text{ vech }\) stands for the vech operator, i.e., \(\text{ vech }(\mathbf {A})=(a_{11}, \ldots ,a_{k1}, \ldots ,\) \(a_{ii}, \ldots ,a_{ki}, \ldots a_{kk})^\prime \) for an arbitrary symmetric matrix \(\mathbf {A}=(a_{ij})\), and

$$\begin{aligned} \mathbf {\Omega }=\left( \begin{array}{ll} \varvec{\Sigma }&{}\quad \mathbf {0} \\ \mathbf {0} &{}\quad \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \\ \end{array} \right) . \end{aligned}$$

In the following we make use of the operator vec defined by \(\text{ vec }(\mathbf {A})=(a_{11}, \ldots ,a_{k1}, \ldots ,a_{1i}, \ldots ,a_{ki},\) \(a_{1k}, \ldots ,a_{kk})^\prime \). The symbol \(\mathbf {I}_{k^2}\) denotes the identity matrix of order \(k^2\); \(\mathbf {K}_k\) is a commutation matrix; \(\mathbf {D}_k\) is a \(k^2\times k(k+1)/2\) duplication matrix such that \(\mathbf {D}_k \text{ vech }(\mathbf {A})= \text{ vec }(\mathbf {A})\) and \(\mathbf {D}_k^+=(\mathbf {D}_k^\prime \mathbf {D}_k)^{-1}\mathbf {D}_k^\prime \) with the property \(\mathbf {D}_k^+ \text{ vec }(\mathbf {A})= \text{ vech }(\mathbf {A})\) (cf., Harville 1997). Finally, the symbol \(\otimes \) denotes the Kronecker product.

Next, we derive the asymptotic distribution of \(\hat{R}_{\mathrm{GMV}}\), \(\hat{V}_{\mathrm{GMV}}\), and \(\hat{s}\) which is further used in the proof of the theorem. From the proof of Theorem 1 in Bodnar et al. (2009), we get

$$\begin{aligned} \frac{\partial R_{\mathrm{GMV}}}{\partial \varvec{\mu }}= & {} \frac{\varvec{\Sigma }^{-1}\mathbf {1}}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}},\\ \frac{\partial V_{\mathrm{GMV}}}{\partial \varvec{\mu }}= & {} \mathbf {0},\\ \frac{\partial s}{\partial \varvec{\mu }}= & {} 2\mathbf {Q}\varvec{\mu },\\ \frac{\partial R_{\mathrm{GMV}}}{\partial \text{ vech }(\varvec{\Sigma })}= & {} \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }} \left( V_{\mathrm{GMV}}(\mathbf {1}\otimes \varvec{\mu }) -R_{\mathrm{GMV}}V_{\mathrm{GMV}}(\mathbf {1}\otimes \mathbf {1})\right) ,\\ \frac{\partial V_{\mathrm{GMV}}}{\partial \text{ vech }(\varvec{\Sigma })}= & {} -V_{\mathrm{GMV}}^{-2}\frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}(\mathbf {1}\otimes \mathbf {1}),\\ \frac{\partial s}{\partial \text{ vech }(\varvec{\Sigma })}= & {} -\frac{\partial (\mathrm{vec}\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}(R_{\mathrm{GMV}}^2 (\mathbf {1}\otimes \mathbf {1})-2R_{\mathrm{GMV}}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })), \end{aligned}$$

where \(\mathbf {Q}=\varvec{\Sigma }^{-1}-\frac{\varvec{\Sigma }^{-1}\mathbf {1}\mathbf {1}'\varvec{\Sigma }^{-1}}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}\) and (cf., Harville 1997, p. 368)

$$\begin{aligned} \frac{\partial (\text{ vec }(\varvec{\Sigma }^{-1}))^\prime }{\partial \text{ vech }\varvec{\Sigma }}=-\mathbf {D}^\prime _k(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1}){\mathbf {D}^{+}_k}^\prime \mathbf {D}^\prime _k. \end{aligned}$$
(30)

The application of the delta-method (cf., Theorem 3.7 in DasGupta 2008) leads to

$$\begin{aligned}\sqrt{n}\left( \left( \begin{array}{c} \hat{R}_{\mathrm{GMV}} \\ \hat{V}_{\mathrm{GMV}}\\ \hat{s}\end{array}\right) -\left( \begin{array}{c} R_{\mathrm{GMV}} \\ V_{\mathrm{GMV}}\\ s\end{array}\right) \right) \mathop {\rightarrow }\limits ^{d} \mathcal {N}\left( \left( \begin{array}{c} 0 \\ 0\\ 0\end{array}\right) ,\left( \begin{array}{ccc} \sigma ^2_1 &{} \sigma _{12} &{} \sigma _{13}\\ \sigma _{12} &{} \sigma ^2_2 &{} \sigma _{23} \\ \sigma _{13} &{} \sigma _{23} &{} \sigma ^2_3 \end{array}\right) \right) ,\end{aligned}$$

where

$$\begin{aligned} \sigma ^2_1= & {} ((\partial R_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial R_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))') \mathbf {\Omega }((\partial R_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial R_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))')^\prime ,\\ \sigma _{12}= & {} ((\partial R_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial R_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))') \mathbf {\Omega }((\partial V_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial V_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))')^\prime ,\\ \sigma _{13}= & {} ((\partial R_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial R_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))') \mathbf {\Omega }((\partial s/\partial \varvec{\mu })' \; (\partial s/\partial (\text{ vech }\varvec{\Sigma }))')^\prime ,\\ \sigma ^2_2= & {} ((\partial V_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial V_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))') \mathbf {\Omega }((\partial V_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial V_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))')^\prime ,\\ \sigma _{23}= & {} ((\partial V_{\mathrm{GMV}}/\partial \varvec{\mu })' \; (\partial V_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))') \mathbf {\Omega }((\partial s/\partial \varvec{\mu })' \; (\partial s/\partial (\text{ vech }\varvec{\Sigma }))')^\prime ,\\ \sigma ^2_3= & {} ((\partial s/\partial \varvec{\mu })' \; (\partial s/\partial (\text{ vech }\varvec{\Sigma }))') \mathbf {\Omega }((\partial s/\partial \varvec{\mu })' \; (\partial s/\partial (\text{ vech }\varvec{\Sigma }))')^\prime . \end{aligned}$$

We get that

$$\begin{aligned} \sigma ^2_1= & {} (\partial R_{\mathrm{GMV}}/\partial \varvec{\mu })'\varvec{\Sigma }(\partial R_{\mathrm{GMV}}/\partial \varvec{\mu })\\&+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} (\partial R_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))'\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime }(\partial R_{\mathrm{GMV}}/\partial (\text{ vech }\varvec{\Sigma }))\\= & {} \frac{1}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_{\mathrm{GMV}}(\mathbf {1}\otimes \varvec{\mu }) -R_{\mathrm{GMV}}V_{\mathrm{GMV}}(\mathbf {1}\otimes \mathbf {1})\right) ' \left( \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\right) '\\&\times \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }} \left( V_{\mathrm{GMV}}(\mathbf {1}\otimes \varvec{\mu }) -R_{\mathrm{GMV}}V_{\mathrm{GMV}}(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} V_{\mathrm{GMV}}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_{\mathrm{GMV}}(\mathbf {1}\otimes \varvec{\mu }) -R_{\mathrm{GMV}}V_{\mathrm{GMV}}(\mathbf {1}\otimes \mathbf {1})\right) '\\&\times \mathbf {D}_k{\mathbf {D}^{+}_k}(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\mathbf {D}_k\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \mathbf {D}^\prime _k(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1}){\mathbf {D}^{+}_k}^\prime \mathbf {D}^\prime _k\\&\times \left( V_{\mathrm{GMV}}(\mathbf {1}\otimes \varvec{\mu }) -R_{\mathrm{GMV}}V_{\mathrm{GMV}}(\mathbf {1}\otimes \mathbf {1})\right) . \end{aligned}$$

Let \(\mathbf {N}_{k}=\mathbf {D}_k{\mathbf {D}^{+}_k}\). Taking into account that for arbitrary \(k\times k\) matrix \(\mathbf {A}\) the following equalities hold:

$$\begin{aligned} \mathbf {N}_{k}= & {} \mathbf {D}_k{\mathbf {D}^{+}_k}=\frac{1}{2}(\mathbf {I}_{k^2}+\mathbf {K}_k),\\ \mathbf {N}_{k}(\mathbf {A}\otimes \mathbf {A})= & {} (\mathbf {A}\otimes \mathbf {A})\mathbf {N}_{k},\\ \mathbf {D}_k{\mathbf {D}^{+}_k}(\mathbf {A}\otimes \mathbf {A})\mathbf {D}_k= & {} (\mathbf {A}\otimes \mathbf {A})\mathbf {D}_k,\\ \mathbf {N}_{k}= & {} \mathbf {N}_{k}^2=\mathbf {N}_{k}^\prime \end{aligned}$$

we get

$$\begin{aligned}&\mathbf {D}_k{\mathbf {D}^{+}_k}(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\mathbf {D}_k\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k)(\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \mathbf {D}^\prime _k(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1}){\mathbf {D}^{+}_k}^\prime \mathbf {D}^\prime _k\\&\quad =2(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\mathbf {N}_{k}(\varvec{\Sigma }\otimes \varvec{\Sigma })(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})=2\mathbf {N}_{k}(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\\&\quad =(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k). \end{aligned}$$

It implies that

$$\begin{aligned} \sigma ^2_1= & {} V_{\mathrm{GMV}}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_\mathrm{GMV}(\mathbf {1}'\otimes \varvec{\mu }')-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}'\otimes \mathbf {1}')\right) \\&\times (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k)\left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) -R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} V_\mathrm{GMV}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_\mathrm{GMV}(\mathbf {1}'\otimes \varvec{\mu }')-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}'\otimes \mathbf {1}')\right) \\&\times (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu })-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \\&+\,\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_\mathrm{GMV}(\mathbf {1}'\otimes \varvec{\mu }')-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}'\otimes \mathbf {1}')\right) \\&\times (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\left( V_\mathrm{GMV}(\varvec{\mu }\otimes \mathbf {1}) -R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} V_\mathrm{GMV}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\big (V_\mathrm{GMV}^2\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }+R_\mathrm{GMV}^2V_\mathrm{GMV}^2(\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1})^2\\&-\,2R_\mathrm{GMV}V_\mathrm{GMV}^2\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\varvec{\mu }'\varvec{\Sigma }^{-1}\mathbf {1}\big )\\&+\,\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\big (V_\mathrm{GMV}^2(\varvec{\mu }'\varvec{\Sigma }^{-1}\mathbf {1})^2+R_\mathrm{GMV}^2V_\mathrm{GMV}^2(\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1})^2\\&-\,2R_\mathrm{GMV}V_\mathrm{GMV}^2\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\varvec{\mu }'\varvec{\Sigma }^{-1}\mathbf {1}\big )\\= & {} V_\mathrm{GMV}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( \frac{\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}-\left( \frac{\varvec{\mu }'\varvec{\Sigma }^{-1}\mathbf {1}}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}\right) ^2\right) \\= & {} V_\mathrm{GMV}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}sV_\mathrm{GMV}, \end{aligned}$$

where we use that the equality \(\mathbf {K}_k(\mathbf {A}\otimes \mathbf {a})=(\mathbf {a}\otimes \mathbf {A})\) holds for an arbitrary \(k\times n\) matrix \(\mathbf {A}\) and an arbitrary \(k\times 1\) vector \(\mathbf {a}\).

Analogically, for the quantities \(\sigma _{12}\), \(\sigma _{13}\), \(\sigma _{23}\), \(\sigma ^2_2\), and \(\sigma ^2_3\), we get

$$\begin{aligned} \sigma ^2_2= & {} (\partial V_\mathrm{GMV}/\partial \varvec{\mu })'\varvec{\Sigma }(\partial V_\mathrm{GMV}/\partial \varvec{\mu })\\&+\,\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} (\partial V_\mathrm{GMV}/\partial (\text{ vech }\varvec{\Sigma }))'\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime }(\partial V_\mathrm{GMV}/\partial (\text{ vech }\varvec{\Sigma }))\\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) ' \left( \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\right) '\\&\times \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }} \left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( -V_\mathrm{GMV}^2(\mathbf {1}'\otimes \mathbf {1}')\right) (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k)\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}2V_\mathrm{GMV}^4\left( \mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\right) ^2=\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}2V_\mathrm{GMV}^2, \end{aligned}$$
$$\begin{aligned} \sigma ^2_3= & {} (\partial s/\partial \varvec{\mu })'\varvec{\Sigma }(\partial s/\partial \varvec{\mu })\\&+\,\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} (\partial s/\partial (\text{ vech }\varvec{\Sigma }))'\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime }(\partial s/\partial (\text{ vech }\varvec{\Sigma }))\\= & {} 4\varvec{\mu }'\mathbf {Q}'\varvec{\Sigma }\mathbf {Q}\varvec{\mu }+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) '\\&\times \,\left( \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\right) '\\&\times \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\nonumber \\&\times \left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} 4s+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) '\\&\times (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k)\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} 4s+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) '\\&\times (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\varvec{\mu }\otimes \mathbf {1}) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\&+\, \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) '\\&\times (\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} 4s+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (2R_\mathrm{GMV}^4(\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1})^2-8R_\mathrm{GMV}^3\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }\\&+\,8R_\mathrm{GMV}^2(\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu })^2\\&+\,4R_\mathrm{GMV}^2\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }-8R_\mathrm{GMV}\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }+2(\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu })^2\Big )\\= & {} 4s+2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }-R_\mathrm{GMV}^2/V_\mathrm{GMV}\Big )^2 =4s+2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}s, \end{aligned}$$
$$\begin{aligned} \sigma _{12}= & {} (\partial V_\mathrm{GMV}/\partial \varvec{\mu })'\varvec{\Sigma }(\partial R_\mathrm{GMV}/\partial \varvec{\mu })\\&+\,\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} (\partial V_\mathrm{GMV}/\partial (\text{ vech }\varvec{\Sigma }))'\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime }(\partial R_\mathrm{GMV}/\partial (\text{ vech }\varvec{\Sigma }))\\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) ' \left( \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\right) '\\&\times \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }} \left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu })-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k)\\&\times \left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu })-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu })\right. \nonumber \\&\left. -\,R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \\&+\,\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\left( V_\mathrm{GMV}(\varvec{\mu }\otimes \mathbf {1})-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) \Big )\\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (-2V_\mathrm{GMV}^3\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }+2R_\mathrm{GMV}V_\mathrm{GMV}^3(\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1})^2\Big )=0, \end{aligned}$$
$$\begin{aligned} \sigma _{13}= & {} (\partial R_\mathrm{GMV}/\partial \varvec{\mu })'\varvec{\Sigma }(\partial s/\partial \varvec{\mu })\\&+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} (\partial R_\mathrm{GMV}/\partial (\text{ vech }\varvec{\Sigma }))'\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime }(\partial s/\partial (\text{ vech }\varvec{\Sigma }))\\= & {} \left( 2\mathbf {Q}\varvec{\mu }\right) '\varvec{\Sigma }\frac{\varvec{\Sigma }^{-1}\mathbf {1}}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu })-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) '\nonumber \\&\times \left( \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\right) '\\&\times \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\nonumber \\&\left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} 2\left( \varvec{\Sigma }^{-1}\varvec{\mu }-\varvec{\Sigma }^{-1}\mathbf {1}\left( \frac{\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}\right) \right) '\varvec{\Sigma }\frac{\varvec{\Sigma }^{-1}\mathbf {1}}{\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}}\\&+\,\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( V_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu })-R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k)\\&\times \left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} 0+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (2R_\mathrm{GMV}^2V_\mathrm{GMV}\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }-2R_\mathrm{GMV}V_\mathrm{GMV}\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }\\&-\,2R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu })^2+2V_\mathrm{GMV}\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }\varvec{\mu }'\varvec{\Sigma }^{-1}\varvec{\mu }-2R_\mathrm{GMV}^3V_\mathrm{GMV}(\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1})^2\\&+\,4R_\mathrm{GMV}^2V_\mathrm{GMV}\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }-2R_\mathrm{GMV}V_\mathrm{GMV}(\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu })^2=0, \end{aligned}$$

and

$$\begin{aligned} \sigma _{23}= & {} (\partial V_\mathrm{GMV}/\partial \varvec{\mu })'\varvec{\Sigma }(\partial s/\partial \varvec{\mu })\\&+\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} (\partial V_\mathrm{GMV}/\partial (\text{ vech }\varvec{\Sigma }))'\mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime }(\partial s/\partial (\text{ vech }\varvec{\Sigma }))\\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) ' \left( \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\right) '\\&\times \mathbf {D}_k^+(\mathbf {I}_{k^2}+\mathbf {K}_k) (\varvec{\Sigma }\otimes \varvec{\Sigma })\mathbf {D}_k^{+ \, \prime } \frac{\partial (\text{ vec }\varvec{\Sigma }^{-1})'}{\partial \text{ vech }\varvec{\Sigma }}\\&\times \left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})(\mathbf {I}_{k^2}+\mathbf {K}_k)\\&\times \left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (\left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\\&\times \left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\mathbf {1}\otimes \varvec{\mu }) +(\varvec{\mu }\otimes \varvec{\mu })\right) \\&+\, \left( -V_\mathrm{GMV}^2(\mathbf {1}\otimes \mathbf {1})\right) '(\varvec{\Sigma }^{-1}\otimes \varvec{\Sigma }^{-1})\nonumber \\&\times \left( R_\mathrm{GMV}^2 (\mathbf {1}\otimes \mathbf {1})-2R_\mathrm{GMV}(\varvec{\mu }\otimes \mathbf {1}) +(\varvec{\mu }\otimes \varvec{\mu })\right) \Big )\\= & {} \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\Big (-2V_\mathrm{GMV}^2R_\mathrm{GMV}^2(\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1})^2\\&+\,4R_\mathrm{GMV}V_\mathrm{GMV}^2\mathbf {1}'\varvec{\Sigma }^{-1}\mathbf {1}\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu }-2V_\mathrm{GMV}^2(\mathbf {1}'\varvec{\Sigma }^{-1}\varvec{\mu })^2\Big )=0. \end{aligned}$$

Hence,

$$\begin{aligned} \sqrt{n}\left( \left( \begin{array}{c} \hat{R}_\mathrm{GMV} \\ \hat{V}_\mathrm{GMV} \\ \hat{s} \end{array}\right) - \left( \begin{array}{c} R_\mathrm{GMV} \\ V_\mathrm{GMV} \\ s \end{array}\right) \right) \mathop {\longrightarrow }\limits ^{d} \mathcal {N}\left( \mathbf {0},\varvec{\Xi }\right) \,. \end{aligned}$$
(31)
$$\begin{aligned} \varvec{\Xi }=\left( \begin{array}{ccc} V_\mathrm{GMV}(1+s\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}) &{} 0 &{} 0 \\ 0 &{} 2V_\mathrm{GMV}^2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} &{} 0 \\ 0 &{} 0 &{} 4s+2s^2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2} \\ \end{array} \right) \end{aligned}$$
  1. (a)

    Rewriting (17), we get

    $$\begin{aligned} \hat{\alpha }_\mathrm{TP}= F \left( \gamma \sqrt{(\hat{\varvec{\mu }}-r_0\mathbf {1})^\prime \hat{\varvec{\Sigma }}^{-1} (\hat{\varvec{\mu }}-r_0\mathbf {1})}\right) =F \left( \gamma \sqrt{\hat{s}+\frac{(\hat{R}_\mathrm{GMV}-r_0)^2}{\hat{V}_\mathrm{GMV}}}\right) . \end{aligned}$$

    The application of (31) and the delta method lead to

    $$\begin{aligned} \sqrt{n}(\hat{\alpha }_{\mathrm{TP}}-\alpha _{\mathrm{TP}})\mathop {\longrightarrow }\limits ^{d} \mathcal {N}(0,\sigma ^2_{\alpha }) \end{aligned}$$

    where

    $$\begin{aligned} \sigma _{\alpha }^2= & {} \left( \frac{f\left( \gamma \sqrt{s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}}\right) }{2\sqrt{s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}}}\right) ^2 \gamma ^2\\&\qquad \times \left( 2\frac{(R_\mathrm{GMV}-r_0)}{V_\mathrm{GMV}},\,-\frac{(R_\mathrm{GMV}-r_0)^2}{V_\mathrm{GMV}^2},\,1\right) \varvec{\Xi } \left( \begin{array}{c} 2(R_\mathrm{GMV}-r_0)/V_\mathrm{GMV} \\ -(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}^2 \\ 1 \end{array}\right) \\= & {} \left( \frac{f\left( \gamma \sqrt{s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}}\right) }{2\sqrt{s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}}}\right) ^2\gamma ^2\\&\times \left( 4\frac{(R_\mathrm{GMV}-r_0)^2}{V_\mathrm{GMV}}\left( 1+s\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\right) +2\frac{(R_\mathrm{GMV}-r_0)^4}{V_\mathrm{GMV}^2}\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}+ 4s+2s^2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\right) \\= & {} \frac{2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\left( s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}\right) ^2+4\left( s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}\right) }{4\left( s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}\right) }\\&\times f^2\left( \gamma \sqrt{s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}}\right) \gamma ^2\\= & {} \left( 1+\frac{1}{2}\left( s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}\right) \frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\right) f^2\left( \gamma \sqrt{s+(R_\mathrm{GMV}-r_0)^2/V_\mathrm{GMV}}\right) \gamma ^2\\= & {} \left( 1+\frac{\psi ^{\prime \prime }(0)}{2\left( \psi ^{\prime }(0)\right) ^2}(\varvec{\mu }-r_0\mathbf {1})^\prime \varvec{\Sigma }^{-1}(\varvec{\mu }-r_0\mathbf {1})\right) f^2\left( \gamma \sqrt{(\varvec{\mu }-r_0\mathbf {1})^\prime \varvec{\Sigma }^{-1}(\varvec{\mu }-r_0\mathbf {1})}\right) \gamma ^2\,. \end{aligned}$$
  2. (b)

    Similarly, we get

    $$\begin{aligned} \sqrt{n}(\hat{r}_0(\alpha _{\mathrm{TP}})-r_0(\alpha _{\mathrm{TP}}))\mathop {\longrightarrow }\limits ^{d} \mathcal {N}(0,\sigma ^2_{r_0}) \end{aligned}$$

    where

    $$\begin{aligned} \sigma ^2_{r_0}= & {} \left( 1,\,-\frac{\sqrt{\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2-s}}{2\sqrt{V_\mathrm{GMV}}},\,\frac{\sqrt{V_\mathrm{GMV}}}{2\sqrt{\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2-s}}\right) \varvec{\Xi } \left( \begin{array}{c} 1 \\ -\frac{\sqrt{\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2-s}}{2\sqrt{V_\mathrm{GMV}}} \\ \frac{\sqrt{V_\mathrm{GMV}}}{2\sqrt{\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2-s}} \end{array}\right) \\= & {} V_\mathrm{GMV}\left( 1+s\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\right) +\frac{\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2-s}{2}V_\mathrm{GMV}\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\\&+\left( 4s+2s^2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}\right) \frac{V_\mathrm{GMV}}{4(\gamma ^{-2}d_{1-\alpha _\mathrm{TP}}^2-s)}\\= & {} V_\mathrm{GMV}\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2\frac{2+\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2\frac{\psi ^{\prime \prime }(0)}{\left( \psi ^{\prime }(0)\right) ^2}}{2(\gamma ^{-2}d_{1-\alpha _{\mathrm{TP}}}^2-s)} \end{aligned}$$

The theorem is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodnar, T., Zabolotskyy, T. How risky is the optimal portfolio which maximizes the Sharpe ratio?. AStA Adv Stat Anal 101, 1–28 (2017). https://doi.org/10.1007/s10182-016-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-016-0270-3

Keywords

JEL Classification

Navigation