Skip to main content

Advertisement

Log in

Effects of Unilateral Acoustic Trauma on Tinnitus-Related Spontaneous Activity in the Inferior Colliculus

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

This study describes the long-term effects of sound-induced cochlear trauma on spontaneous discharge rates in the central nucleus of the inferior colliculus (ICC). As in previous studies, single-unit recordings in Sprague–Dawley rats revealed pervasive increases in spontaneous discharge rates. Based on differences in their sources of input, it was hypothesized that physiologically defined neural populations of the auditory midbrain would reveal the brainstem sources that dictate ICC hyperactivity. Abnormal spontaneous activity was restricted to target neurons of the ventral cochlear nucleus. Nearly identical patterns of hyperactivity were observed in the contralateral and ipsilateral ICC. The elevation in spontaneous activity extended to frequencies well below and above the region of maximum threshold shift. This lack of frequency organization suggests that ICC hyperactivity may be influenced by regions of the brainstem that are not tonotopically organized. Sound-induced hyperactivity is often observed in animals with behavioral signs of tinnitus. Prior to electrophysiological recording, rats were screened for tinnitus by measuring gap pre-pulse inhibition of the acoustic startle reflex (GPIASR). Rats with positive phenotypes did not exhibit unique patterns of ICC hyperactivity. This ambiguity raises concerns regarding animal behavioral models of tinnitus. If our screening procedures were valid, ICC hyperactivity is observed in animals without behavioral indications of the disorder. Alternatively, if the perception of tinnitus is strictly linked to ongoing ICC hyperactivity, our current behavioral approach failed to provide a reliable assessment of tinnitus state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Basta D, Ernst A (2004) Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices. Neurosci Lett 368:297–302

    Article  CAS  PubMed  Google Scholar 

  • Bauer CA, Brozoski TJ, Holder TM, Caspary DM (2000) Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hear Res 147:175–182

    Article  CAS  PubMed  Google Scholar 

  • Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA (2005) The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hear Res 206:227–236

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390

    CAS  PubMed  Google Scholar 

  • Brozoski TJ, Wisner KW, Sybert LT, Bauer CA (2012) Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model. J Assoc Res Otolaryngol 13:55–66

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol 197:705–722

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Ma WL, Young ED (2009) Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol 10:5–22

    Article  PubMed Central  PubMed  Google Scholar 

  • Campolo J, Lobarinas E, Salvi R (2013) Does tinnitus “fill in” the silent gaps? Noise Health 15:398–405

    Article  PubMed  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474

    Article  PubMed  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476

    Article  CAS  PubMed  Google Scholar 

  • Chen GD, Jastreboff PJ (1995) Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82:158–178

    Article  CAS  PubMed  Google Scholar 

  • Davis KA (2002) Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. J Neurophysiol 87:1824–1835

    PubMed  Google Scholar 

  • Davis KA, Ramachandran R, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. II. Sensitivity to interaural level differences. J Neurophysiol 82:164–175

    CAS  PubMed  Google Scholar 

  • Dong S, Mulders WH, Rodger J, Woo S, Robertson D (2010) Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci 31:1616–1628

    PubMed  Google Scholar 

  • Duque D, Malmierca MS (2014) Stimulus-specific adaptation in the inferior colliculus of the mouse: anesthesia and spontaneous activity effects. Brain Struct Funct. doi:10.1007/s00429-014-0862-1

  • Eggermont JJ. Central tinnitus (2003) Auris Nasus Larynx 30 Suppl: S7–12

  • Ehret G, Egorova M, Hage SR, Muller BA (2003) Spatial map of frequency tuning-curve shapes in the mouse inferior colliculus. Neuroreport 14:1365–1369

    PubMed  Google Scholar 

  • Fournier P, Hebert S (2013) Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 295:16–23

    Article  PubMed  Google Scholar 

  • Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833

    Article  PubMed Central  PubMed  Google Scholar 

  • Heffner HE, Harrington IA (2002) Tinnitus in hamsters following exposure to intense sound. Hear Res 170:83–95

    Article  PubMed  Google Scholar 

  • Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564

    Article  PubMed  Google Scholar 

  • Imig TJ, Durham D (2005) Effect of unilateral noise exposure on the tonotopic distribution of spontaneous activity in the cochlear nucleus and inferior colliculus in the cortically intact and decorticate rat. J Comp Neurol 490:391–413

    Article  PubMed  Google Scholar 

  • Jastreboff PJ, Sasaki CT (1994) An animal model of tinnitus: a decade of development. Am J Otol 15:19–27

    CAS  PubMed  Google Scholar 

  • Kaltenbach JA (2006) Summary of evidence pointing to a role of the dorsal cochlear nucleus in the etiology of tinnitus. Acta Otolaryngol Suppl: 20–26

  • Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–172

    Article  CAS  PubMed  Google Scholar 

  • Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355:121–125

    Article  CAS  PubMed  Google Scholar 

  • Koehler SD, Shore SE (2013) Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci 33:19647–19656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314:684–706

    Article  CAS  PubMed  Google Scholar 

  • Lauer AM, May BJ, Hao ZJ, Watson J (2009) Analysis of environmental sound levels in modern rodent housing rooms. Lab Anim (NY) 38:154–160

    Article  Google Scholar 

  • LeBeau FE, Malmierca MS, Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci 21:7303–7312

    CAS  PubMed  Google Scholar 

  • Li S, Choi V, Tzounopoulos T (2013) Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci U S A 110:9980–9985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobarinas E, Hayes SH, Allman BL (2013) The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 295:150–160

    Article  PubMed Central  PubMed  Google Scholar 

  • Longenecker RJ, Galazyuk AV (2011) Development of tinnitus in CBA/CaJ mice following sound exposure. J Assoc Res Otolaryngol 12:647–658

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma WL, Young ED (2006) Dorsal cochlear nucleus response properties following acoustic trauma: response maps and spontaneous activity. Hear Res 216–217:176–188

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma WL, Hidaka H, May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res 212:9–21

    Article  PubMed  Google Scholar 

  • Manzoor NF, Licari FG, Klapchar M, Elkin RL, Gao Y, Chen G, Kaltenbach JA (2012) Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol 108:976–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manzoor NF, Gao Y, Licari F, Kaltenbach JA (2013) Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res 295:114–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A 108:7601–7606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM (2000) GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res 147:251–260

    Article  CAS  PubMed  Google Scholar 

  • Moller AR (2007) The role of neural plasticity in tinnitus. Prog Brain Res 166:37–45

    Article  PubMed  Google Scholar 

  • Mulders WH, Ding D, Salvi R, Robertson D (2011) Relationship between auditory thresholds, central spontaneous activity, and hair cell loss after acoustic trauma. J Comp Neurol 519:2637–2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264:24–46

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Shackleton TM, Sumner CJ, Zobay O, Rees A (2013) Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes. J Physiol 591:4003–4025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13:139–143

    Article  CAS  PubMed  Google Scholar 

  • Pilati N, Ison MJ, Barker M, Mulheran M, Large CH, Forsythe ID, Matthias J, Hamann M (2012) Mechanisms contributing to central excitability changes during hearing loss. Proc Natl Acad Sci U S A 109:8292–8297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potashner SJ, Suneja SK, Benson CG (1997) Regulation of D-aspartate release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol 148:222–235

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran R, May BJ (2002) Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats. J Neurophysiol 88:2251–2261

    Article  PubMed  Google Scholar 

  • Ramachandran R, Davis KA, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. J Neurophysiol 82:152–163

    CAS  PubMed  Google Scholar 

  • Robertson D, Bester C, Vogler D, Mulders WH (2013) Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input. Hear Res 295:124–129

    Article  PubMed  Google Scholar 

  • Salvi RJ, Saunders SS, Gratton MA, Arehole S, Powers N (1990) Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res 50:245–257

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260

    Article  CAS  PubMed  Google Scholar 

  • Suneja SK, Potashner SJ, Benson CG (1998) Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol 151:273–288

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195

    Article  PubMed  Google Scholar 

  • Vogler DP, Robertson D, Mulders WH (2011) Hyperactivity in the ventral cochlear nucleus after cochlear trauma. J Neurosci 31:6639–6645

    Article  CAS  PubMed  Google Scholar 

  • Vogler DP, Robertson D, Mulders WH (2014) Hyperactivity following unilateral hearing loss in characterized cells in the inferior colliculus. Neuroscience 265:28–36

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Brozoski TJ, Caspary DM (2011) Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res 279:111–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang F, Zuo L, Hong B, Han D, Range EM, Zhao L, Sui Y, Guo W, Liu L (2013) Tonotopic reorganization and spontaneous firing in inferior colliculus during both short and long recovery periods after noise overexposure. J Biomed Sci 20:91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JJ, Young ED (2013) Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction. Front Neural Circ 7:90

    Google Scholar 

  • Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200

    Article  CAS  PubMed  Google Scholar 

  • Zook JM, Casseday JH (1987) Convergence of ascending pathways at the inferior colliculus of the mustache bat, Pteronotus parnellii. J Comp Neurol 261:347–361

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford J. May.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ropp, TJ.F., Tiedemann, K.L., Young, E.D. et al. Effects of Unilateral Acoustic Trauma on Tinnitus-Related Spontaneous Activity in the Inferior Colliculus. JARO 15, 1007–1022 (2014). https://doi.org/10.1007/s10162-014-0488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0488-2

Keywords

Navigation