Skip to main content

Advertisement

Log in

Retrograde Facilitation of Efferent Synapses on Cochlear Hair Cells

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Cochlear inner hair cells (IHCs) are temporarily innervated by efferent cholinergic fibers prior to the onset of hearing. During low-frequency firing, these efferent synapses have a relatively low probability of transmitter release but facilitate strongly with repetitive stimulation. A retrograde signal from the hair cell to the efferent terminal contributes to this facilitation. When IHCs were treated with the ryanodine receptor agonist, cyclic adenosine phosphoribose (cADPR), release probability of the efferent terminal rose. This effect was quantified by computing the quantum content from a train of 100 suprathreshold stimuli to the efferent fibers. Quantum content was sevenfold higher when IHCs were treated with 100 μM cADPR (applied in the recording pipette). Since cADPR is membrane impermeant, this result implies that an extracellular messenger travels from the hair cell to the efferent terminal. cADPR is presumed to generate this messenger by increasing cytoplasmic calcium. Consistent with this presumption, voltage-gated calcium flux into the IHC also caused retrograde facilitation of efferent transmission. Retrograde facilitation was observed in IHCs of a vesicular glutamate transporter (VGlut3) null mouse and for wild-type rat hair cells subject to wide-spectrum glutamate receptor blockade, demonstrating that glutamate was unlikely to be the extracellular messenger. Rather, bath application of nitric oxide (NO) donors caused an increase in potassium-evoked efferent transmitter release while the NO scavenger carboxy-PTIO was able to prevent retrograde facilitation produced by cADPR or IHC depolarization. Thus, hair cell activity can drive retrograde facilitation of efferent input via calcium-dependent production of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  • Almanza A, Navarrete F, Vega R, Soto E (2007) Modulation of voltage-gated Ca2+ current in vestibular hair cells by nitric oxide. J Neurophysiol 97:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Ballestero J, de San Z, Martin J, Goutman J, Elgoyhen AB, Fuchs PA, Katz E (2011) Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells. J Neurosci 31:14763–14774

    Article  PubMed  CAS  Google Scholar 

  • Beurg M, Safieddine S, Roux I, Bouleau Y, Petit C, Dulon D (2008) Calcium- and otoferlin-dependent exocytosis by immature outer hair cells. J Neurosci 28:1798–1803

    Article  PubMed  CAS  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599

    PubMed  CAS  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Kujawa SG, Duca ML (1998) Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79:3077–3087

    PubMed  CAS  Google Scholar 

  • Chen JW, Eatock RA (2000) Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol 84:139–151

    PubMed  CAS  Google Scholar 

  • Evans MG, Lagostena L, Darbon P, Mammano F (2000) Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea. Cell Calcium 28:195–203

    Article  PubMed  CAS  Google Scholar 

  • Fessenden JD, Coling DE, Schacht J (1994) Detection and characterization of nitric oxide synthase in the mammalian cochlea. Brain Res 668:9–15

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809

    PubMed  CAS  Google Scholar 

  • Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to the cochlea. J Neurophysiol 19:424–437

    PubMed  CAS  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194

    Article  PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2000) Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288:2366–2368

    Article  PubMed  CAS  Google Scholar 

  • Goutman JD, Fuchs PA, Glowatzki E (2005) Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J Physiol 566:49–59

    Article  PubMed  CAS  Google Scholar 

  • Grant L, Fuchs P (2008) Calcium, calmodulin-dependent inactivation of calcium channels in inner hair cells of the rat cochlea. J Neurophysiol 99(5):2183–2193

    Article  PubMed  Google Scholar 

  • Hackney CM, Mahendrasingam S, Penn A, Fettiplace R (2005) The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 25:7867–7875

    Article  PubMed  CAS  Google Scholar 

  • Heinrich UR, Maurer J, Gosepath K, Mann W (1997) Electron microscopic localization of nitric oxide I synthase in the organ of Corti of the guinea pig. Eur Arch Otorhinolaryngol 254:396–400

    Article  PubMed  CAS  Google Scholar 

  • Katz E, Elgoyhen AB, Gomez-Casati ME, Knipper M, Vetter DE, Fuchs PA, Glowatzki E (2004) Developmental regulation of nicotinic synapses on cochlear inner hair cells. J Neurosci 24:7814–7820

    Article  PubMed  CAS  Google Scholar 

  • Knirsch M, Brandt N, Braig C, Kuhn S, Hirt B, Munkner S, Knipper M, Engel J (2007) Persistence of Ca(v)1.3 Ca2+ channels in mature outer hair cells supports outer hair cell afferent signaling. J Neurosci 27:6442–6451

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ, Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281–284

    Article  PubMed  CAS  Google Scholar 

  • Lauer AM, Fuchs PA, Ryugo DK, Francis HW (2012) Efferent synapses return to inner hair cells in the aging cochlea. Neurobiol Aging 33(12):2892–2902

    Article  PubMed  Google Scholar 

  • Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA (2004) A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 24:11160–11164

    Article  PubMed  CAS  Google Scholar 

  • Lv P, Rodriguez-Contreras A, Kim HJ, Zhu J, Wei D, Choong-Ryoul S, Eastwood E, Mu K, Levic S, Song H, Yevgeniy PY, Smith PJ, Yamoah EN (2010) Release and elementary mechanisms of nitric oxide in hair cells. J Neurophysiol 103:2494–2505

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Rusch A, Kros CJ (2003a) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552:743–761

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Holley MC, Kros CJ (2003b) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548:383–400

    Article  PubMed  CAS  Google Scholar 

  • Meffert MK, Calakos NC, Scheller RH, Schulman H (1996) Nitric oxide modulates synaptic vesicle docking fusion reactions. Neuron 16:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453

    Article  PubMed  CAS  Google Scholar 

  • Murthy V, Taranda J, Elgoyhen AB, Vetter DE (2009) Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs. Dev Neurobiol 69:931–949

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J, Martin A, Fuchs P, Brown D, Diamond M, Weisblat D (2012) From neuron to brain. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+−activated K + channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601

    Article  PubMed  CAS  Google Scholar 

  • Riemann R, Reuss S (1999) Nitric oxide synthase in identified olivocochlear projection neurons in rat and guinea pig. Hear Res 135:181–189

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear Res 20:63–77

    Article  PubMed  CAS  Google Scholar 

  • Roux I, Wersinger E, McIntosh JM, Fuchs PA, Glowatzki E (2011) Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea. J Neurosci 31:15092–15101

    Article  PubMed  CAS  Google Scholar 

  • Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL (1999) AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 518:667–680

    Article  PubMed  CAS  Google Scholar 

  • Saito K (1980) Fine structure of the sensory epithelium of the guinea pig organ of Corti: afferent and efferent synapses of hair cells. J Ultrastruct Res 71:222–232

    Article  PubMed  CAS  Google Scholar 

  • Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, Clause A, Kandler K, Noebels JL, Glowatzki E, Lustig LR, Edwards RH (2008) Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57:263–275

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Harada N, Nakazawa H, Yamashita T (2005) Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 21:2912–2922

    Article  PubMed  Google Scholar 

  • Shen J, Harada N, Nakazawa H, Kaneko T, Izumikawa M, Yamashita T (2006) Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea. Brain Res 1081:101–112

    Article  PubMed  CAS  Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437

    PubMed  CAS  Google Scholar 

  • Tritsch NX, Rodriguez-Contreras A, Crins TT, Wang HC, Borst JG, Bergles DE (2010) Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat Neurosci 13:1050–1052

    Article  PubMed  CAS  Google Scholar 

  • Wersinger E, McLean WJ, Fuchs PA, Pyott SJ (2010) BK channels mediate cholinergic inhibition of high frequency cochlear hair cells. PLoS One 5:e13836

    Article  PubMed  Google Scholar 

  • Zorrilla de San Martin J, Pyott S, Ballestero J, Katz E (2010) Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse. J Neurosci 30:12157–12167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIDCD R01 DC001508 (PAF) and NIDCD P30 DC005211, NIDCD T32000023 to the Center for Hearing and Balance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Albert Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, JH., Zachary, S., Rohmann, K.N. et al. Retrograde Facilitation of Efferent Synapses on Cochlear Hair Cells. JARO 14, 17–27 (2013). https://doi.org/10.1007/s10162-012-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-012-0361-0

Keywords

Navigation