Skip to main content
Log in

Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3β4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and β4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data will be made available upon reasonable request to the corresponding author.

References

  1. Motts SD, Schofield BR (2009) Sources of cholinergic input to the inferior colliculus. Neuroscience 160(1):103–114. https://doi.org/10.1016/j.neuroscience.2009.02.036

    Article  CAS  PubMed  Google Scholar 

  2. Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci Off J Soc Neurosci 34(13):4708–4727. https://doi.org/10.1523/JNEUROSCI.2617-13.2014

    Article  CAS  Google Scholar 

  3. Gut NK, Winn P (2016) The pedunculopontine tegmental nucleus-A functional hypothesis from the comparative literature. Mov Disord Off J Mov Disord Soc 31(5):615–624. https://doi.org/10.1002/mds.26556

    Article  Google Scholar 

  4. Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE (2017) Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci Off J Soc Neurosci 37(5):1352–1366. https://doi.org/10.1523/JNEUROSCI.1405-16.2016

    Article  CAS  Google Scholar 

  5. Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus: I. Evoked potentials Brain Res Bull 37(3):257–264. https://doi.org/10.1016/0361-9230(95)00002-v

    Article  CAS  PubMed  Google Scholar 

  6. Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus: II. Unit responses Brain Res Bull 37(3):265–273. https://doi.org/10.1016/0361-9230(95)00001-u

    Article  CAS  PubMed  Google Scholar 

  7. Sakai K (2012) Discharge properties of presumed cholinergic and noncholinergic laterodorsal tegmental neurons related to cortical activation in non-anesthetized mice. Neuroscience 224:172–190. https://doi.org/10.1016/j.neuroscience.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  8. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng F-J, Lin Y, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci USA 112(2):584–589. https://doi.org/10.1073/pnas.1423136112

    Article  CAS  PubMed  Google Scholar 

  9. Ayala YA, Malmierca MS (2015) Cholinergic modulation of stimulus-specific adaptation in the inferior colliculus. J Neurosci Off J Soc Neurosci 35(35):12261–12272. https://doi.org/10.1523/JNEUROSCI.0909-15.2015

    Article  CAS  Google Scholar 

  10. Askew C, Intskirveli I, Metherate R (2017) Systemic nicotine increases gain and narrows receptive fields in A1 via integrated cortical and subcortical actions. eNeuro 4(3):0192-17. https://doi.org/10.1523/ENEURO.0192-17.2017

  11. Felix RA, Chavez VA, Novicio DM, Morley BJ, Portfors CV (2019) Nicotinic acetylcholine receptor subunit α7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol 122(2):451–465. https://doi.org/10.1152/jn.00170.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji W, Gao E, Suga N (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J Neurophysiol 86(1):211–225. https://doi.org/10.1152/jn.2001.86.1.211

    Article  CAS  PubMed  Google Scholar 

  13. Ji W, Suga N (2009) Tone-specific and nonspecific plasticity of inferior colliculus elicited by pseudo-conditioning: role of acetylcholine and auditory and somatosensory cortices. J Neurophysiol 102(2):941–952. https://doi.org/10.1152/jn.00222.2009

    Article  PubMed  PubMed Central  Google Scholar 

  14. Noftz WA, Beebe NL, Mellott JG, Schofield BR (2020) Cholinergic projections from the pedunculopontine tegmental nucleus contact excitatory and inhibitory neurons in the inferior colliculus. Front Neural Circuits 14:43. https://doi.org/10.3389/fncir.2020.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beebe NL, Schofield BR (2021) Cholinergic boutons are closely associated with excitatory cells and four subtypes of inhibitory cells in the inferior colliculus. J Chem Neuroanat 116:101998. https://doi.org/10.1016/j.jchemneu.2021.101998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci Off J Soc Neurosci 5(5):1307–1315

    Article  CAS  Google Scholar 

  17. Cortes R, Probst A, Palacios JM (1984) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: brainstem. Neuroscience 12(4):1003–1026. https://doi.org/10.1016/0306-4522(84)90001-0

    Article  CAS  PubMed  Google Scholar 

  18. Gahring LC, Persiyanov K, Rogers SW (2004) Neuronal and astrocyte expression of nicotinic receptor subunit beta4 in the adult mouse brain. J Comp Neurol 468(3):322–333. https://doi.org/10.1002/cne.10942

    Article  CAS  PubMed  Google Scholar 

  19. Glendenning KK, Baker BN (1988) Neuroanatomical distribution of receptors for three potential inhibitory neurotransmitters in the brainstem auditory nuclei of the cat. J Comp Neurol 275(2):288–308. https://doi.org/10.1002/cne.902750210

    Article  CAS  PubMed  Google Scholar 

  20. Happe HK, Morley BJ (2004) Distribution and postnatal development of alpha 7 nicotinic acetylcholine receptors in the rodent lower auditory brainstem. Brain Res Dev Brain Res 153(1):29–37. https://doi.org/10.1016/j.devbrainres.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  21. Morley BJ, Happe HK (2000) Cholinergic receptors: dual roles in transduction and plasticity. Hear Res 147(1–2):104–112. https://doi.org/10.1016/s0378-5955(00)00124-6

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz RD (1986) Autoradiographic distribution of high affinity muscarinic and nicotinic cholinergic receptors labeled with [3H]acetylcholine in rat brain. Life Sci 38(23):2111–2119. https://doi.org/10.1016/0024-3205(86)90210-9

    Article  CAS  PubMed  Google Scholar 

  23. Sottile SY, Hackett TA, Cai R, Ling L, Llano DA, Caspary DM (2017) Presynaptic neuronal nicotinic receptors differentially shape select inputs to auditory thalamus and are negatively impacted by aging. J Neurosci Off J Soc Neurosci 37(47):11377–11389. https://doi.org/10.1523/JNEUROSCI.1795-17.2017

    Article  CAS  Google Scholar 

  24. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284(2):314–335. https://doi.org/10.1002/cne.902840212

    Article  CAS  PubMed  Google Scholar 

  25. Whiteaker P, Peterson CG, Xu W, McIntosh JM, Paylor R, Beaudet AL, Collins AC, Marks MJ (2002) Involvement of the alpha3 subunit in central nicotinic binding populations. J Neurosci Off J Soc Neurosci 22(7):2522–2529. https://doi.org/10.1523/JNEUROSCI.22-07-02522.2002

  26. Rivera-Perez LM, Kwapiszewski JT, Roberts MT (2021) α3β4 ∗ nicotinic acetylcholine receptors strongly modulate the excitability of VIP neurons in the mouse inferior colliculus. Front Neural Circuits 15:709387. https://doi.org/10.3389/fncir.2021.709387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beebe NL, Silveira MA, Goyer D, Noftz WA, Roberts MT, Schofield BR (2022) Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus. J Chem Neuroanat 102189. https://doi.org/10.1016/j.jchemneu.2022.102189

  28. Goyer D, Silveira MA, George AP, Beebe NL, Edelbrock RM, Malinski PT, Schofield BR, Roberts MT (2019) A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-Cre mice. eLife 8:e43770. https://doi.org/10.7554/eLife.43770

  29. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Kvitsani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71(6):995–1013. https://doi.org/10.1016/j.neuron.2011.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  31. Kolisnyk B, Al-Onaizi MA, Hirata PHF, Guzman MS, Nikolova S, Barbash S, Soreq H, Bartha R, Prado MAM, Prado VF (2013) Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci Off J Soc Neurosci 33(37):14908–14920. https://doi.org/10.1523/JNEUROSCI.1933-13.2013

    Article  CAS  Google Scholar 

  32. Gillet C, Goyer D, Kurth S, Griebel H, Kuenzel T (2018) Cholinergic innervation of principal neurons in the cochlear nucleus of the Mongolian gerbil. J Comp Neurol 526(10):1647–1661. https://doi.org/10.1002/cne.24433

    Article  CAS  PubMed  Google Scholar 

  33. Goyer D, Kurth S, Gillet C, Keine C, Rübsamen R, Kuenzel T (2016) Slow cholinergic modulation of spike probability in ultra-fast time-coding sensory neurons. eNeuro 3(5). https://doi.org/10.1523/ENEURO.0186-16.2016

  34. Noftz WA, Beebe NL, Mellott JG, Schofield BR (2021) Dense cholinergic projections to auditory and multisensory nuclei of the intercollicular midbrain. Hear Res 411:108352. https://doi.org/10.1016/j.heares.2021.108352

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Wu C, Martel DT, West M, Sutton MA, Shore SE (2019) Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus 29(8):669–682. https://doi.org/10.1002/hipo.23058

    Article  CAS  PubMed  Google Scholar 

  36. Choy Buentello D, Bishop DC, Oliver DL (2015) Differential distribution of GABA and glycine terminals in the inferior colliculus of rat and mouse. J Comp Neurol 523(18):2683–2697. https://doi.org/10.1002/cne.23810

    Article  CAS  PubMed  Google Scholar 

  37. Anair JD, Silveira MA, Mirjalili P, Beebe NL, Schofield BR, Roberts MT (2022) Inhibitory NPY neurons provide a large and heterotopic commissural projection in the inferior colliculus. Front Neural Circuits 16:871924. https://doi.org/10.3389/fncir.2022.871924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marks MJ, Whiteaker P, Collins AC (2006) Deletion of the alpha7, beta2, or beta4 nicotinic receptor subunit genes identifies highly expressed subtypes with relatively low affinity for [3H]epibatidine. Mol Pharmacol 70(3):947–959. https://doi.org/10.1124/mol.106.025338

    Article  CAS  PubMed  Google Scholar 

  39. Marks MJ, Whiteaker P, Grady SR, Picciotto MR, McIntosh JM, Collins AC (2002) Characterization of [(125) I]epibatidine binding and nicotinic agonist-mediated (86) Rb(+) efflux in interpeduncular nucleus and inferior colliculus of beta2 null mutant mice. J Neurochem 81(5):1102–1115. https://doi.org/10.1046/j.1471-4159.2002.00910.x

    Article  CAS  PubMed  Google Scholar 

  40. Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci Off J Soc Neurosci 23(15):6255–6263

    Article  CAS  Google Scholar 

  41. Smiley JF, Morrell F, Mesulam MM (1997) Cholinergic synapses in human cerebral cortex: an ultrastructural study in serial sections. Exp Neurol 144(2):361–368. https://doi.org/10.1006/exnr.1997.6413

    Article  CAS  PubMed  Google Scholar 

  42. Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2001) Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105(2):277–285. https://doi.org/10.1016/s0306-4522(01)00172-5

    Article  CAS  PubMed  Google Scholar 

  43. Bieszczad KM, Kant R, Constantinescu CC, Pandey SK, Kawai HD, Metherate R, Weinberger NM, Mukherjee J (2012) Nicotinic acetylcholine receptors in rat forebrain that bind 18F-nifene: relating PET imaging, autoradiography, and behavior. Synap N Y N 66(5):418–434. https://doi.org/10.1002/syn.21530

    Article  CAS  Google Scholar 

  44. Zaveri N, Jiang F, Olsen C, Polgar W, Toll L (2010) Novel α3β4 nicotinic acetylcholine receptor-selective ligands. Discovery, structure-activity studies, and pharmacological evaluation. J Med Chem 53(22):8187–8191. https://doi.org/10.1021/jm1006148

  45. Gilmor ML, Nash NR, Roghani A, Edwards RH, Yi H, Hersch SM, Levey AI (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci Off J Soc Neurosci 16(7):2179–2190

    Article  CAS  Google Scholar 

  46. Weihe E, Tao-Cheng JH, Schäfer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci U S A 93(8):3547–3552. https://doi.org/10.1073/pnas.93.8.3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Disney AA, Higley MJ (2020) Diverse spatiotemporal scales of cholinergic signaling in the neocortex. J Neurosci Off J Soc Neurosci 40(4):720–725. https://doi.org/10.1523/JNEUROSCI.1306-19.2019

    Article  CAS  Google Scholar 

  48. Sarter M, Lustig C (2020) Forebrain cholinergic signaling: wired and phasic, not tonic, and causing behavior. J Neurosci Off J Soc Neurosci 40(4):712–719. https://doi.org/10.1523/JNEUROSCI.1305-19.2019

    Article  CAS  Google Scholar 

  49. Krashia P, Moroni M, Broadbent S, Hofmann G, Kracun S, Beato M, Groot-Kormelink PJ, Sivilotti LG (2010) Human α3β4 neuronal nicotinic receptors show different stoichiometry if they are expressed in Xenopus oocytes or mammalian HEK293 cells. PLoS ONE 5(10):e13611. https://doi.org/10.1371/journal.pone.0013611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. David R, Ciuraszkiewicz A, Simeone X, Orr-Urtreger A, Papke RL, McIntosh JM, Huck S, Scholze P (2010) Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes. Eur J Neurosci 31(6):978–993. https://doi.org/10.1111/j.1460-9568.2010.07133.x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Williams SR, Fletcher LN (2018) A dendritic substrate for the cholinergic control of neocortical output neurons. Neuron. https://doi.org/10.1016/j.neuron.2018.11.035

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mena-Segovia J, Bolam JP (2017) Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94(1):7–18. https://doi.org/10.1016/j.neuron.2017.02.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nichole Beebe, David Goyer, Jeffrey Mellott, William Noftz, and Brett Schofield for helpful advice and feedback, and Marina Silveira for help with the in situ hybridization experiments.

Funding

This work was supported by National Institutes of Health Grants F31 DC019292 (LMR-P) and R01 DC018284 (MTR).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of the study, designed experiments, prepared figures, composed and revised the manuscript, and approved the submitted version. JTK and LMR-P performed experiments and analyzed data. MTR obtained funding and supervised the study.

Corresponding author

Correspondence to Michael T. Roberts.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was first published as a preprint: Kwapiszewski JT, Rivera-Perez LM, and Roberts MT (2022). Cholinergic boutons are distributed along the dendrites and somata of VIP neurons in the inferior colliculus. bioRxiv. doi: https://doi.org/10.1101/2022.09.18.508423

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwapiszewski, J.T., Rivera-Perez, L.M. & Roberts, M.T. Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus. JARO 24, 181–196 (2023). https://doi.org/10.1007/s10162-022-00885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00885-9

Keywords

Navigation