Skip to main content
Log in

Landscape level processes driving carabid crop assemblage in dynamic farmlands

  • Original article
  • Published:
Population Ecology

Abstract

Landscape heterogeneity has been shown to be a major factor in the maintenance of biodiversity and associated services in agricultural landscapes. Farmlands are mosaics of fields with various crop types and farming practices. Crop phenology creates asynchrony between fields sown and harvested in different periods (winter vs. spring crops). The present study was conducted to examine the influence of such spatio-temporal heterogeneity on biodiversity, with the hypothesis that it would lead to spatio-temporal redistribution (shifting) of species. Species richness and activity-density of carabid beetles in winter cereal (winter) and maize (spring) crops were compared across 20 landscapes distributed along a double gradient of relative area and spatial configuration of winter and spring crops. Maize fields were sampled in spring and late summer for comparison over time. The response of carabid species richness to landscape heterogeneity was weak in spring, but maize field richness benefited from adjacencies with woody habitat, in late summer. In spring, increased length of interfaces between winter and spring crops lowered carabid activity-density in winter cereal fields, suggesting that maize fields acted as sinks. Interfaces between woody habitats and crops increased activity-density in both crop types. We found no evidence of spatio-temporal complementation, but different species benefited from winter cereals and maize in spring and late summer, increasing overall diversity. These findings confirm the role of adjacencies between woody and cultivated habitats in the conservation of abundant carabid assemblage in winter cereals and maize. We conclude that between-field population movement occurs, and advocate for better consideration of farmland heterogeneity in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manage 74:1175–1178

    Article  Google Scholar 

  • Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32:321–333

    Article  Google Scholar 

  • Barbaro L, Couzi L, Bretagnolle V, Nezan J, Vetillard F (2008) Multi-scale habitat selection and foraging ecology of the eurasian hoopoe (Upupa epops) in pine plantations. Biodivers Conserv 17:1073–1087

    Article  Google Scholar 

  • Bartoń K (2015) MuMIn: multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn. Accessed 2 Dec 2011

  • Baudry J, Schermann N, Boussard H (2006) Chloe 3.1: freeware of multi-scales analyses. INRA, SAD-Paysage. http://www.rennes.inra.fr/sad/Outils-Produits/Outils-informatiques/Chloe. Accessed 5 Jan 2011

  • Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Benton TG, Vickery J, Wilson J (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekotter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, Van Wingerden W, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  • Blitzer EJ, Dormann CF, Holzschuh A, Klein AM, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ 146:34–43

    Article  Google Scholar 

  • Bouche G, Lepage B, Migeot V, Ingrand P (2009) Application of detecting and taking overdispersion into account in Poisson regression model. Revue d’Epidémiologie et de Santé Publique 57:285–296

    Article  CAS  PubMed  Google Scholar 

  • Bressan A, Garcia FJM, Semetey O, Boudon-Padieu E (2010) Spatio-temporal pattern of Pentastiridius leporinus migration in an ephemeral cropping system. Agric For Entomol 12:59–68

    Article  Google Scholar 

  • Burel F, Baudry J (2005) Habitat quality and connectivity in agricultural landscapes: the role of land use systems at various scales in time. Ecol Indic 5:305–313

    Article  Google Scholar 

  • Burel F, Butet A, Delettre YR, Millan-Pena N (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landsc Urban Plan 67:195–204

    Article  Google Scholar 

  • Burel F, Aviron S, Baudry J, Le Feon V, Vasseur C (2013) The structure and dynamics of agricultural landscapes as drivers of biodiversity. In: Fu B, Jones BK (eds) Landscape ecology for sustainable environment and culture. Springer, Berlin, pp 285–308

    Chapter  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference. A practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Cosentino BJ, Schooley RL, Phillips CA (2011) Connectivity of agroecosystems: dispersal costs can vary among crops. Landsc Ecol 26:371–379

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Crist TO, Veech JA, Gering JC, Summerville KS (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am Nat 162:734–743

    Article  PubMed  Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330

    Article  CAS  PubMed  Google Scholar 

  • Duflot R, Georges R, Ernoult A, Aviron S, Burel F (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecol 56:19–26

    Article  Google Scholar 

  • Duflot R, Aviron S, Ernoult A, Fahrig L, Burel F (2015) Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: a case study. Ecol Res 30:75–83

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S, King D, Lindsay KF, Mitchell S, Tischendorf L (2015) Farmlands with smaller crop fields have higher within-field biodiversity. Agric Ecosyst Environ 200:219–234

    Article  Google Scholar 

  • Hatten TD, Bosque-Perez NA, Labonte JR, Guy SO, Eigenbrode SD (2007) Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops. Environ Entomol 36:356–368

    Article  PubMed  Google Scholar 

  • Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Holland JM (2002) Carabid beetles: their ecology, survival and use in agroecosystems. In: Holland JM (ed) The agroecology of carabid beetles. Intercept Press, Andover, pp 1–40

    Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500

    Article  PubMed  Google Scholar 

  • Huston MA (1995) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Jonason D, Andersson GKS, Ockinger E, Smith HG, Bengtsson J (2012) Field scale organic farming does not counteract landscape effects on butterfly trait composition. Agric Ecosyst Environ 158:66–71

    Article  Google Scholar 

  • Kleijn D, Rundlof M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481

    Article  PubMed  Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228

    Article  Google Scholar 

  • Le Feon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissiere BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101

    Article  Google Scholar 

  • Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou JP, Trommetter M (2008) Agriculture et biodiversité. Valoriser les synergies. Expertise scientifique collective. Rapport INRA, Paris (in French)

    Google Scholar 

  • Macfadyen S, Muller W (2013) Edges in agricultural landscapes: species interactions and movement of natural enemies. PLoS ONE 8:e59659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonhaute JE, Peres-Neto P, Lucas E (2010) Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agric Ecosyst Environ 139:500–507

    Article  Google Scholar 

  • Men XY, Ge F, Yardim EN, Parajulee MN (2004) Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids in seedling cotton. Biocontrol 49:701–714

    Article  Google Scholar 

  • Millan-Pena N, Butet A, Delettre Y, Morant P, Burel F (2003) Landscape context and carabid beetles (Coleoptera: Carabidae) communities of hedgerows in western France. Agric Ecosyst Environ 94:59–72

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DC

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 9 Sept 2015

  • Ouin A, Paillat G, Butet A, Burel F (2000) Spatial dynamics of wood mouse (Apodemus sylvaticus) in an agricultural landscape under intensive use in the Mont Saint Michel Bay (France). Agric Ecosyst Environ 78:159–165

    Article  Google Scholar 

  • Parsa S, Ccanto R, Rosenheim JA (2011) Resource concentration dilutes a key pest in indigenous potato agriculture. Ecol Appl 21:539–546

    Article  PubMed  Google Scholar 

  • Pasher J, Mitchell SW, King DJ, Fahrig L, Smith AC, Lindsay KE (2013) Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landsc Ecol 28:371–383

    Article  Google Scholar 

  • Poggio SL, Chaneton EJ, Ghersa CM (2010) Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biol Conserv 143:2477–2486

    Article  Google Scholar 

  • Purvis G, Fadl A (1996) Emergence of Carabidae (Coleoptera) from pupation: a technique for studying the ‘productivity’ of carabid habitats. Ann Zool Fenn 33:215–223

    Google Scholar 

  • Purvis G, Fadl A (2002) The influence of cropping rotations and soil cultivation practice on the population ecology of carabids (Coleoptera: Carabidae) in arable land. Pedobiologia 46:452–474

    Article  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    Article  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Robinson RA, Wilson JD, Crick HQP (2001) The importance of arable habitat for farmland birds in grassland landscapes. J Appl Ecol 38:1059–1069

    Article  Google Scholar 

  • Roger J-L, Jambon O, Bouger G (2010) Clé de détermination des carabidés: Paysages agricoles de la Zone Atelier d’Armorique. Laboratoires INRA SAD-Paysage et CNRS ECOBIO, Rennes (in French)

    Google Scholar 

  • Scrucca L (2014). qcc: an R package for quality control charting and statistical process control. R package version 2.6. http://CRAN.R-project.org/package=qcc. Accessed 10 Oct 2012

  • Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc Ecol 24:1271–1285

    Article  Google Scholar 

  • Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113

    Article  Google Scholar 

  • Sotherton NW (1984) The distribution and abundance of predatory arthropods overwintering on farmland. Ann Appl Biol 105:423–429

    Article  Google Scholar 

  • Sotherton NW (1985) The distribution and abundance of predatory coleoptera overwintering in field boundaries. Ann Appl Biol 106:17–21

    Article  Google Scholar 

  • Thiele H-U (1977) Carabid beetles in their environment. A study on habitat selection by adaptation in physiology and behaviour. Springer, New York

    Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41:526–538

    Article  Google Scholar 

  • Tscharntke T, Rand TA, Bianchi F (2005) The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann Zool Fenn 42:421–432

    Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Frund J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, Van Der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard J-M, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Woodcock BA, Redhead J, Vanbergen AJ, Hulmes L, Hulmes S, Peyton J, Nowakowski M, Pywell RF, Heard MS (2010) Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric Ecosyst Environ 139:181–186

    Article  Google Scholar 

Download references

Acknowledgments

R. Duflot benefited from a Ph.D. Grant from the Institut National de la Recherche Agronomique (INRA) and Centre National de la Recherche Scientifique—Institut Ecologie et Environnement (CNRS-InEE). Additional financial support was provided by the DIVA-Agriconnect research project of the French Ministry of Ecology. Our research also benefited from the Zone-Atelier Armorique, which is supported financially by INRA and CNRS-InEE. Special thanks to A. Deliencourt, L. Meneaud, and J.-L. Roger for their support in field work and great contributions to carabid species identification. The authors acknowledge four anonymous referees for their constructive comments that helped improving the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Duflot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duflot, R., Ernoult, A., Burel, F. et al. Landscape level processes driving carabid crop assemblage in dynamic farmlands. Popul Ecol 58, 265–275 (2016). https://doi.org/10.1007/s10144-015-0534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-015-0534-x

Keywords

Navigation