Skip to main content
Log in

Local genetic structure of a montane herb among isolated grassland patches: implications for the preservation of genetic diversity under climate change

  • Original article
  • Published:
Population Ecology

Abstract

Habitat loss, fragmentation of meadow patches, and global climate change (GCC) threaten plant communities of montane grasslands. We analyzed the genetic structure of the montane herb Geranium sylvaticum L. on a local scale in order to understand the effects of habitat fragmentation and potential GCC impacts on genetic diversity and differentiation. Amplified fragment length polymorphism (AFLP) fingerprinting and cpDNA sequencing was performed for 295 individuals of 15 G. sylvaticum populations spanning the entire distribution range of the species in the Taunus mountain range in Germany. We found patterns of substantial genetic differentiation among populations using 150 polymorphic AFLP markers (mean F ST = 0.105), but no variation in 896 bp of plastid DNA sequences. While populations in the center of their local distribution range were genetically diverse and less differentiated, higher F ST values and reduced genetic variability was revealed for the populations at the low-altitudinal distribution margins. Projections of GCC effects on the distribution of G. sylvaticum in 2050 showed that GCC will likely lead to the extinction of most edge populations. To maintain regional genetic diversity, conservation efforts should focus on the diverse high-altitude populations, although a potential loss of unique variations in genetically differentiated peripheral populations could lower the overall genetic diversity and potentially the long-term viability in the study region. This study documents the usefulness of fine-scale assessments of genetic population structure in combination with niche modeling to reveal priority regions for the effective long-term conservation of populations and their genetic variation under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecol Biogeogr 18:223–239

    Article  Google Scholar 

  • Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc B Biol Sci 353:177–186

    Article  CAS  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Asikainen E, Mutikainen P (2003) Female frequency and relative fitness of females and hermaphrodites in gynodioecious Geranium sylvaticum (Geraniaceae). Am J Bot 90:226–234

    Article  PubMed  Google Scholar 

  • Asikainen E, Mutikainen P (2004) Inbreeding depression and outcrossing rate in 11 populations of gynodioecious Geranium sylvaticum. In: Asikainen E (ed) Maintenance of gynodioecy in Geranium sylvaticum. PhD Dissertation. University of Turku, Turku, pp 107–122

    Google Scholar 

  • ATKIS (2010) Amtliches Topographisch-Kartographisches Informationssystem. Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt

  • Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger KT, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nature Clim Change 1:313–318

    Article  Google Scholar 

  • Bijlsma R, Loeschke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129

    Article  Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708

    Article  PubMed  Google Scholar 

  • Bruelheide H (2003) Translocation of a montane meadow to simulate the potential impact of climate change. Appl Veg Sci 6:23–24

    Article  Google Scholar 

  • Buckland SM, Thompson K, Hodgson JG, Grime JP (2001) Grassland invasions: effects of manipulations of climate and management. J Appl Ecol 38:301–309

    Article  Google Scholar 

  • Busby JR (1991) A bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO Australia, Clayton South, pp 64–68

    Google Scholar 

  • Corander J, Marttinen P, Siren J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma 9:539

    Article  Google Scholar 

  • Cordellier M, Pfenninger M (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18:534–544

    Article  PubMed  CAS  Google Scholar 

  • Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327

    Article  PubMed  CAS  Google Scholar 

  • Dostálek T, Münzbergová Z, Plačková I (2010) Genetic diversity and its effect on fitness in an endangered plant species, Dracocephalum austriacum L. Conserv Genet 11:773–783

    Article  Google Scholar 

  • Dubey S, Shine S (2010) Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae). Mol Ecol 19:886–897

    Article  PubMed  CAS  Google Scholar 

  • Duchesne P, Turgeon J (2009) FLOCK: a method for quick mapping of admixture without source samples. Mol Ecol Resour 9:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 2nd edn. Ulmer Verlag, Stuttgart (in German)

    Google Scholar 

  • ESRI—Environmental Systems Research Institute (2006) ArcGIS 9.3. Environmental Systems Research Institute, Redlands

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Fielding AH, Bell JF (1994) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Clim Dyn 16:451–467

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) An introduction to conservation genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • Fridley JD, Grime P, Askew AP, Moser B, Stevens CJ (2011) Soil heterogeneity buffers community response to climate change in species-rich grassland. Global Change Biol 17:2002–2011

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  PubMed  CAS  Google Scholar 

  • Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765

    Article  PubMed  CAS  Google Scholar 

  • Grime JP, Fridley JD, Askew AP, Thompson K, Hodgson JG, Bennett CR (2008) Long-term resistance to simulated climate change in an infertile grassland. Proc Natl Acad Sci USA 105:10028–10032

    Article  PubMed  CAS  Google Scholar 

  • Gruver A, Dutton JA (2012) Geography 486—cartography and visualization. e-Education Institute, College of Earth and Mineral Sciences, The Pennsylvania State University. https://www.e-education.psu.edu/geog486/l4_p4.html

  • Hæggström C (1990) The influence of sheep and cattle grazing on wooded meadows in Åland, SW Finland. Acta Bot Fenn 141:1–28

    Google Scholar 

  • Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community—results of a climate-warming experiment. Science 267:876–880

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hegi G (1975) Illustrierte Flora von Mitteleuropa. Verlag Paul Parey, Berlin (in German)

    Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005a) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Jarvis A, O’Brien R, Mathur P, Bussink C, Cruz M, Barrantes I, Rojas E (2005b) DIVA-GIS version 5.2 manual. http://www.diva-gis.org (cited February 2011)

  • Hof AR, Jansson R, Nilsson C (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Divers Distrib 18:554–562

    Article  Google Scholar 

  • Holsinger KE, Lewis PO (2003) Hickory: a package for analysis of population genetic data v1.1. http://darwin.eeb.uconn.edu/hickory/documentation.html (cited July 6 2010)

  • Hundt R (1966) Ökologisch-geobotanische Untersuchungen an Pflanzen der mitteleuropäischen Wiesenvegetation. Botanische Studien 16 (in German)

  • IPCC (2007) Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Jakob SS, Ihlow A, Blattner FR (2007) Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)—niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol Ecol 16:1713–1727

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6 v.3.16. http://ibdws.sdsu.edu (cited Nov 3 2010)

  • Katterfeldt D (2006) Standortanalyse von Geranium sylvaticum im Kontext des Klimawandels. Diploma thesis. Johann Wolfgang Goethe University, Department for Ecology and Geobotany, Frankfurt (in German)

    Google Scholar 

  • Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516

    Article  Google Scholar 

  • Kumar S, Spaulding SA, Stohlgren TJ, Hermann KA, Schmidt TS, Bahls LL (2009) Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Front Ecol Environ 7:415–420

    Article  Google Scholar 

  • La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Philos Trans R Soc B Biol Sci 277:3401–3410

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Lihová J, Kudoh H, Marhold K (2010) Genetic structure and phylogeography of a temperate-boreal herb, Cardamine scutata (Brassicaceae), in Northeast Asia inferred from AFLPs and cpDNA haplotypes. Am J Bot 97:1058–1070

    Article  PubMed  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Lüscher A, Daepp M, Blum H, Hartwig UE, Nösberger J (2004) Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur J Agron 21:379–398

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Messtischblätter des Königlich Preußischen Generalstabs (Maps of the Royal Prussian Generality) 1:25000, mapped 1866/67. Reprinted by Hessisches Landesvermessungsamt Wiesbaden, Wiesbaden

  • Meusel H, Jäger E, Rauschert S, Weinert E (1978) Vergleichende Chorologie der zentraleuropäischen Flora. Gustav Fischer Verlag, Jena (in German)

    Google Scholar 

  • Moen J, Gardfjell H, Ericson L, Oksanen L (1996) Shoot survival under intense grazing for two broad-leaved herbs with different chemical defense systems. Oikos 75:359–364

    Article  Google Scholar 

  • Morecroft MD, Masters GJ, Brown VK, Clark IP, Taylor ME, Whitehouse AT (2004) Changing precipitation patterns alter plant community dynamics and succession in an ex-arable grassland. Funct Ecol 18:648–655

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Müller-Schneider P (1977) Verbreitungsbiologie (Diasporologie) der Blütenpflanzen. Veröffentlichungen des geobotanischen Institutes der eidgenössischen technischen Hochschule, Stiftung Rübel 61:226 (in German)

    Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröffentlichungen des geobotanischen Institutes der eidgenössischen technischen Hochschule, Stiftung Rübel 85:261 (in German)

    Google Scholar 

  • Mutikainen P, Delph LF (1998) Inbreeding depression in gynodioecious Lobelia siphilitica: among-family differences override between-morph differences. Evolution 52:1572–1582

    Article  Google Scholar 

  • Nawrath S (2005) Flora und Vegetation des Grünlands im südöstlichen Taunus und seinem Vorland. PhD Dissertation. Johann Wolfgang Goethe University, Department for Ecology and Geobotany, Frankfurt (in German)

    Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecol Biogeogr 17:152–163

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pearse DE, Hayes SA, Bond MH, Hanson CV, Anderson EC, Macfarlane RB, Garza JC (2009) Over the falls? Rapid evolution of ecotypic differentiation in Steelhead/Rainbow Trout (Oncorhynchus mykiss). J Hered 100:515–525

    Article  PubMed  CAS  Google Scholar 

  • Perttula U (1941) Untersuchungen über die generative und vegetative Vermehrung der Blütenpflanzen in der Wald-, Hainwiesen- und Hainfelsenvegetation. Ann Acad Sci Fenn Ser A Tom LVIII(1), Helsinki (in German)

  • Petit RJ, Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff, pp 83–90

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pompe S, Hanspach J, Badeck F, Klotz S, Thuiller W, Kühn I (2008) Climate and land use change impacts on plant distributions in Germany. Biol Lett 4:564–567

    Article  PubMed  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Poschlod P, Dannemann A, Kahmen S, Melzheimer V, Biedermann H, Mengel C, Neugebauer KR, Pantle I (1999) Genes in the landscape—change in central European land use and its impact on genetic diversity of plants. Schriftenreihe Vegetationskunde 32:111–127

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Ramírez J, Bueno-Cabrera A (2009) Working with climate data and niche modeling I. Creation of bioclimatic variables. http://gisweb.ciat.cgiar.org/GCMPage/docs/tutorial_bcvars_creation.pdf

  • Ramula S, Toivonen E, Mutikainen P (2007) Demographic consequences of pollen limitation and inbreeding depression in a gynodioecious herb. Int J Plant Sci 168:443–453

    Article  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    PubMed  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rejzkova E, Fer T, Vojta J, Marhold K (2008) Phylogeography of the forest herb Carex pilosa (Cyperaceae). Bot J Linn Soc 158:115–130

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Salzmann R, Schenker P (1946) Der Gehalt des Kuhkotes an keimfähigen Samen auf einer Weide der Voralpen. Schweizerischer Alpwirtschaftlicher Verein, Alpwirtschaftliche Monatsblätter 80:58–64 (in German)

    Google Scholar 

  • Scherrer D, Körner C (2010) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schumacher W (2005) Ressourcenschonende Grünlandnutzung—Erfolge, Probleme, Perspektiven. Schriftenreihe des Lehr- und Forschungsschwerpunktes „Umweltverträgliche und Standortgerechte Landwirtschaft“, Landwirtschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 130:1–3 (in German)

  • Sebald O, Seybold S, Phillipi G (1992) Die Farn- und Blütenpflanzen Baden-Württembergs. Ulmer Verlag, Stuttgart (in German)

    Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Sonibare MA, Asiedu R, Albach DC (2010) Genetic diversity of Dioscorea dumetorum (Kunth) Pax using amplified fragment length polymorphisms (AFLP) and cpDNA. Biochem Syst Ecol 38:320–334

    Article  CAS  Google Scholar 

  • Storfer A (1996) Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Trends Ecol Evol 11:343–348

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Todisco V, Gratton P, Zakharov E, Wheat C, Sbordoni V, Sperling F (2012) Mitochondrial phylogeography of the holarctic Parnassius phoebus complex supports a recent refugial model for alpine butterflies. J Biogeogr 39:1058–1072

    Article  Google Scholar 

  • Uebeler M, Ehmke W, Nawrath S, König A, Wittig R (2008) Ergebnisse der Floristischen Kartierung im Hohen Taunus. In: Wittig R, Uebeler M, Ehmke W (eds) Die Flora des Hohen Taunus. Geobot Kolloq, vol 21, pp 23–42 (in German with English abstract)

  • Varga S, Kytoviita MM (2010) Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in Geranium sylvaticum. Funct Ecol 24:750–758

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vogler DW, Kalisz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55:202–204

    PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Weaver KF, Anderson T, Guralnick R (2006) Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Divers Distrib 12:756–766

    Article  Google Scholar 

  • Westergaard KB, Jorgensen MH, Gabrielsen TM, Alsos IG, Brochmann C (2010) The extreme Beringian/Atlantic disjunction in Saxifraga rivularis (Saxifragaceae) has formed at least twice. J Biogeogr 37:1262–1276

    Article  Google Scholar 

  • Wirth LR, Graf R, Gugerli F, Landergott U, Holderegger R (2010) Lower selfing rate at higher altitudes in the alpine plant Eritrichium nanum (Boraginaceae). Am J Bot 97:899–901

    Article  PubMed  Google Scholar 

  • Wittig R, Becker U, Nawrath S (2010) Grassland loss in the vicinity of a highly prospering metropolitan area from 1867/68 to 2000-the example of the Taunus (Hesse, Germany) and its Vorland. Landsc Urban Plan 95:175–180

    Article  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Hungate BA (2012) Biogeochemical and ecological feedbacks in grassland responses to warming. Nat Clim Change 2:458–461

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Tobias Erik Reiners for editing the maps of our study site. Barbara Herte, Thomas Michl, Katja Kramp, and Katharina Schulte provided valuable advice concerning marker development and testing. This study was funded by the Hessian Initiative for Scientific and Economic Excellence (LOEWE—Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz) of the Hessian Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Nowak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, A., Sauer, J., Wittig, R. et al. Local genetic structure of a montane herb among isolated grassland patches: implications for the preservation of genetic diversity under climate change. Popul Ecol 55, 417–431 (2013). https://doi.org/10.1007/s10144-013-0373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-013-0373-6

Keywords

Navigation