Skip to main content
Log in

Bacterial and Archaeal Symbionts in the South China Sea Sponge Phakellia fusca: Community Structure, Relative Abundance, and Ammonia-Oxidizing Populations

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Many biologically active natural products have been isolated from Phakellia fusca, an indigenous sponge in the South China Sea; however, the microbial symbionts of Phakellia fusca remain unknown. The present investigations on sponge microbial community are mainly based on qualitative analysis, while quantitative analysis, e.g., relative abundance, is rarely carried out, and little is known about the roles of microbial symbionts. In this study, the community structure and relative abundance of bacteria, actinobacteria, and archaea associated with Phakellia fusca were revealed by 16S rRNA gene library-based sequencing and quantitative real time PCR (qRT-PCR). The ammonia-oxidizing populations were investigated based on amoA gene and anammox-specific 16S rRNA gene libraries. As a result, it was found that bacterial symbionts of sponge Phakellia fusca consist of Proteobacteria including Gamma-, Alpha-, and Delta-proteobacteria, Cyanobacteria with Gamma-proteobacteria as the predominant components. In particular, the diversity of actinobacterial symbionts in Phakellia fusca is high, which is composed of Corynebacterineae, Acidimicrobidae, Frankineae, Micrococcineae, and Streptosporangineae. All the observed archaea in sponge Phakellia fusca belong to Crenarchaeota, and the detected ammonia-oxidizing populations are ammonia-oxidizing archaea, suggesting the nitrification function of sponge archaeal symbionts. According to qRT-PCR analysis, bacterial symbionts dominated the microbial community, while archaea represented the second predominant symbionts, followed by actinobacteria. The revealed diverse prokaryotic symbionts of Phakellia fusca are valuable for the understanding and in-depth utilization of Phakellia fusca microbial symbionts. This study extends our knowledge of the community, especially the relative abundance of microbial symbionts in sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

    Article  PubMed  CAS  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  PubMed  CAS  Google Scholar 

  • Christopher A, Francis KJR, Michael J, Brian BO (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  Google Scholar 

  • Clay BL, Kugrens P, Lee RE (1999) A revised classification of Cryptophyta. Bot J Linn Soc 131:131–151

    Article  Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP, Morell JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120

    Article  CAS  Google Scholar 

  • Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107

    Article  CAS  Google Scholar 

  • Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum ‘Poribacteria’ in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponge Subertes zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine Crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37:59–88

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–390

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Krsek M (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  • Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243

    Article  PubMed  CAS  Google Scholar 

  • Holmes B, Blanch H (2007) Genus-specific associations of marine sponges with group I crenarchaeotes. Mar Biol 150:759–772

    Article  Google Scholar 

  • Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Anton Leeuw Int J G 71:59–67

    Article  CAS  Google Scholar 

  • Imhoff JF, Stohr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. Prog Mol Subcell Biol 37:35–57

    Article  PubMed  CAS  Google Scholar 

  • James EMS, Luis AM, Alan CW, Michael G, Alan TB (2003) New primers for the class Actinobacteria: application to the marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  Google Scholar 

  • Jiang SM, Sun W, Chen MJ, Dai SK, Zhang L, Liu YH, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Anton Leeuw Int J G 92:405–416

    Article  CAS  Google Scholar 

  • Jimenez E, Ribes M (2007) Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr 52:948–958

    Article  CAS  Google Scholar 

  • Jonathan PZ, Larry AM (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Lee HK, Lee YK, Sim CJ (2003) Diversity of symbiotic archaeal communities in marine sponges from Korea. Biomol Eng 20:299–304

    Article  PubMed  CAS  Google Scholar 

  • Lee OO, Lau SCK, Qian PY (2006) Consistent bacterial community structure associated with the surface of the sponge Mycale adhaerens Bowerbank. Microb Ecol 52:693–707

    Article  PubMed  Google Scholar 

  • Lee OO, Wong YH, Qian PY (2009) Inter- and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl Environ Microbiol 75:3513–3521

    Article  PubMed  CAS  Google Scholar 

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2011) Pyrosequencing reveals high diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664

    Article  PubMed  CAS  Google Scholar 

  • Li ZY (2009) Advances in marine microbial symbionts in the China Sea and related pharmaceutical metabolites. Mar Drugs 7:113–129

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43:410–416

    Article  PubMed  CAS  Google Scholar 

  • Li WL, Yi YH, Wu HM, Xu QZ, Tang HF, Zhou DZ, Lin HW, Wang ZH (2003) Isolation and structure of the cytotoxic cycloheptapeptide phakellistatin 13. J Nat Prod 66:146–148

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, He LM, Wu J, Jiang Q (2006) Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J Exp Mar Bio Ecol 329:75–85

    Article  CAS  Google Scholar 

  • López-Legentil S, Erwin PM, Pawlik JR, Song B (2010) Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monooxygenase genes associated with the Barrel sponge Xestospongia muta. Microb Ecol 60:561–571

    Article  PubMed  Google Scholar 

  • Margot H, Acebal C, Toril E, Amils R, Fernandez J (2002) Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar Biol 140:739–745

    Article  CAS  Google Scholar 

  • Mohamed NM, Albert SC, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921

    Article  PubMed  CAS  Google Scholar 

  • Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    Article  PubMed  CAS  Google Scholar 

  • Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Anton Leeuw Int J G 87:29–36

    Article  CAS  Google Scholar 

  • Muyzer G, Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nakaya A, Onodera Y, Nakagawa T, Satoh K, Takahashi R, Sasaki S, Tokuyama T (2009) Analysis of ammonia monooxygenase and archaeal 16S rRNA gene fragments in nitrifying acid-sulfate soil microcosms. Microbes Environ 24:168–174

    Article  PubMed  Google Scholar 

  • Ovreas L, Forney L, Daae C, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 60:3367–3373

    Google Scholar 

  • Pettit GR, Cichacz Z, Barkoczy J, Dorsaz AC, Herald DL, Williams MD, Doubek DL, Schmidt JM, Tackett LP, Brune DC (1993) Isolation and structure of the marine sponge cell growth inhibitory cyclic peptide Phakellistatin 1. J Nat Prod 56:260–267

    Article  PubMed  CAS  Google Scholar 

  • Pettit GR, Ichihara Y, Wurzel G, Williams MD, Schmidt JM, Chapuis JC (1995) Isolation and structure of Halistatin 3 from the Western Pacific (Chuuk) marine sponge Phakellia sp. J Chem Soc 3:383–385

    Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538

    Article  PubMed  CAS  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, Delong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen nov, sp, nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  PubMed  CAS  Google Scholar 

  • Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SH, Hill RT (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol 12:350–360

    Article  PubMed  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  • Roux KH (1995) Optimization and troubleshooting in PCR. In: Dieffenbach CW, Dveksler GS (eds) PCR primer: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 53–62

    Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Sinigalliano CD, Kuhn DN, Jones RD (1995) Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl Environ Microbiol 61:2702–2706

    PubMed  CAS  Google Scholar 

  • Steger D, Whalan S, Hentschel U, Wagner M, Taylor MW (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  • Taylor MW, Radax R, Wagner M (2007a) Sponge associated microorganism: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U (2007b) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1:187–190

    Article  PubMed  Google Scholar 

  • Thacker RW (2005) Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol 45:369–376

    Article  PubMed  Google Scholar 

  • Vogel G (2008) The inner lives of sponges. Science 320:1280–1284

    Article  Google Scholar 

  • Wang GY (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biot 33:545–551

    Article  CAS  Google Scholar 

  • Webb VL, Maas EW (2002) Sequence analysis of 16S rRNA gene of Cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207:43–47

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Blackall LL (2009) What do we really know about sponge-microbial symbionts? ISME J 3:1–3

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Watts JEM, Hill RT (2001) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Negri AP, Munro MM (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082

    PubMed  CAS  Google Scholar 

  • Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds) Biologie des Spongiaires, vol. 291. Colloques Internationaux du Centre National de la Recherche Scientifique, Paris, pp 373–380

    Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Xue S, Zhao Q, Zhang X, Li J, Jin M, Yu X, Yuan Q (2003) Biopotentials of marine sponges from China oceans: past and future. Biomol Eng 20:413–419

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Anton Leeuw Int J G 90:159–169

    Article  CAS  Google Scholar 

  • Zhang HJ, Yi YH, Yang GJ, Hu MY, Cao GD, Yang F, Lin HW (2010) Proline-containing cyclopeptides from the marine sponge Phakellia fusca. J Nat Prod 73:650–655

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (41076077, 41176127, 81072573).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Li or Houwen Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, M., Liu, F., Zhang, F. et al. Bacterial and Archaeal Symbionts in the South China Sea Sponge Phakellia fusca: Community Structure, Relative Abundance, and Ammonia-Oxidizing Populations. Mar Biotechnol 14, 701–713 (2012). https://doi.org/10.1007/s10126-012-9436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9436-5

Keywords

Navigation