Skip to main content
Log in

Identification and Analysis of Muscle-Related Protein Isoforms Expressed in the White Muscle of the Mandarin Fish (Siniperca chuatsi)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

To identify muscle-related protein isoforms expressed in the white muscle of the mandarin fish Siniperca chuatsi, we analyzed 5,063 high-quality expressed sequence tags (ESTs) from white muscle cDNA library and predicted the integrity of the clusters annotated to these genes and the physiochemical properties of the putative polypeptides with full length. Up to about 33% of total ESTs were annotated to muscle-related proteins: myosin, actin, tropomyosin/troponin complex, parvalbumin, and Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCa). Thirty-two isoforms were identified and more than one isoform existed in each of these proteins. Among these isoforms, 14 putative polypeptides were with full length. In addition, about 2% of total ESTs were significantly homologous to “glue” molecules such as alpha-actinins, myosin-binding proteins, myomesin, tropomodulin, cofilin, profilin, twinfilins, coronin-1, and nebulin, which were required for the integrity and maintenance of the muscle sarcomere. The results demonstrated that multiple isoforms of major muscle-related proteins were expressed in S. chuatsi white muscle. The analysis on these isoforms and other proteins sequences will greatly aid our systematic understanding of the high flexibility of mandarin fish white muscle at molecular level and expand the utility of fish systems as models for the muscle genetic control and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amali AA, Lin CJ, Chen YH, Wang WL, Gong HY, Lee CY, Ko YL, Lu JK, Her GM, Chen TT, Wu JL (2004) Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev Dyn 229:847–856

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RA, Joseph C, Dal Piaz F, Birolo L, Stier G, Pucci P, Pastore A (2000) Binding of alpha-actinin to titin: implications for Z-disk assembly. Biochemistry 39:5255–5264

    Article  PubMed  CAS  Google Scholar 

  • Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    PubMed  CAS  Google Scholar 

  • Biesiadecki BJ, Jin JP (2002) Exon skipping in cardiac troponin T of turkeys with inherited dilated cardiomyopathy. J Biol Chem 277:18459–18468

    Article  PubMed  CAS  Google Scholar 

  • Bryson-Richardson RJ, Daggett DF, Cortes F, Neyt C, Keenan DG, Currie PD (2005) Myosin heavy chain expression in zebrafish and slow muscle composition. Dev Dyn 233:1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Campinho MA, Power DM, Sweeney GE (2005) Identification and analysis of teleost slow muscle troponin T (sTnT) and intronless TnT genes. Gene 361:67–79

    Article  PubMed  CAS  Google Scholar 

  • Coughlin DJ, Caputo ND, Bohnert KL, Weaver FE (2005) Troponin T expression in trout red muscle correlates with muscle activation. J Exp Biol 208:409–417

    Article  PubMed  CAS  Google Scholar 

  • Dalla Libera L, Carpene E, Theibert J, Collins JH (1991) Fish myosin alkali light chains originate from two different genes. J Muscle Res Cell Motil 12:366–371

    Article  PubMed  CAS  Google Scholar 

  • Declercq JP, Tinant B, Parello J, Etienne G, Huber R (1988) Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from Esox lucius). J Mol Biol 202:349–353

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Farah CS, Reinach FC (1995) The troponin complex and regulation of muscle contraction. Faseb J 9:755–767

    PubMed  CAS  Google Scholar 

  • Fukushima H, Ikeda D, Tao Y, Watabe S (2009) Myosin heavy chain genes expressed in juvenile and adult silver carp Hypopthalmichthys molitrix: novel fast-type myosin heavy chain genes of silver carp. Gene 432:102–111

    Google Scholar 

  • Gillis TE, Tibbits GF (2002) Beating the cold: the functional evolution of troponin C in teleost fish. Comp Biochem Physiol A Mol Integr Physiol 132:763–772

    Article  PubMed  Google Scholar 

  • Gillis TE, Marshall CR, Tibbits GF (2007) Functional and evolutionary relationships of troponin C. Physiol Genomics 32:16–27

    Article  PubMed  CAS  Google Scholar 

  • Goodson HV, Warrick HM, Spudich JA (1999) Specialized conservation of surface loops of myosin: evidence that loops are involved in determining functional characteristics. J Mol Biol 287:173–185

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Tao T, Gergely J (1992) Molecular mechanism of troponin-C function. J Muscle Res Cell Motil 13:383–393

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi A, Tettamanti G, Martin BL, Gaffield W, Pownall ME, Hughes SM (2004) Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Development 131:3249–3262

    Article  PubMed  CAS  Google Scholar 

  • Guo XF, Nakaya M, Watabe S (1994) Myosin subfragment-1 isoforms having different heavy chain structures from fast skeletal muscle of thermally acclimated carp. J Biochem 116:728–735

    PubMed  CAS  Google Scholar 

  • Hayashibara T, Miyanishi T (1994) Binding of the amino-terminal region of myosin alkali 1 light chain to actin and its effect on actin-myosin interaction. Biochemistry 33:12821–12827

    Article  PubMed  CAS  Google Scholar 

  • Hirayama Y, Kobiyama A, Ochiai Y, Watabe S (1998) Two types of mRNA encoding myosin regulatory light chain in carp fast skeletal muscle differ in their 3′ non-coding regions and expression patterns following temperature acclimation. J Exp Biol 201:2815–2820

    CAS  Google Scholar 

  • Hirayama Y, Sutoh K, Watabe S (2000) Structure-function relationships of the two surface loops of myosin heavy chain isoforms from thermally acclimated carp. Biochem Biophys Res Commun 269:237–241

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huriaux F, Focant B (1977) Isolation and characterization of the three light chains from carp white muscle myosin. Arch Int Physiol Biochim 85:917–929

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Hirayama Y, Kikuchi K, Kakinuma M, Watabe S (1997) cDNA cloning of myosin heavy chain isoforms from carp fast skeletal muscle and their gene expression associated with temperature acclimation. J Exp Biol 200:27–34

    PubMed  CAS  Google Scholar 

  • Jayantha Gunaratne H, Vacquier VD (2007) Sequence, annotation and developmental expression of the sea urchin Ca(2+) -ATPase family. Gene 397:67–75

    Article  PubMed  CAS  Google Scholar 

  • Jin JP, Root DD (2000) Modulation of troponin T molecular conformation and flexibility by metal ion binding to the NH2-terminal variable region. Biochemistry 39:11702–11713

    Article  PubMed  CAS  Google Scholar 

  • Jin JP, Chen A, Ogut O, Huang QQ (2000) Conformational modulation of slow skeletal muscle troponin T by an NH(2)-terminal metal-binding extension. Am J Physiol Cell Physiol 279:C1067–1077

    PubMed  CAS  Google Scholar 

  • Johnson P, Harris CI, Perry SV (1967) 3-methylhistidine in actin and other muscle proteins. Biochem J 105:361–370

    PubMed  CAS  Google Scholar 

  • Kakinuma M, Hatanaka A, Fukushima H, Nakaya M, Maeda K, Doi Y, Ooi T, Watabe S (2000a) Differential scanning calorimetry of light meromyosin fragments having various lengths of carp fast skeletal muscle isoforms. J Biochem 128:11–20

    CAS  Google Scholar 

  • Kakinuma M, Hatanaka A, Fukushima H, Nakaya M, Maeda K, Doi Y, Ooi T, Watabe S (2000b) Differential scanning calorimetry of light meromyosin fragments having various lengths of carp fast skeletal muscle isoforms. J Biochem (Tokyo) 128:11–20

    CAS  Google Scholar 

  • Kikuchi K, Muramatsu M, Hirayama Y, Watabe S (1999) Characterization of the carp myosin heavy chain multigene family. Gene 228:189–196

    Article  PubMed  CAS  Google Scholar 

  • Kucuktas H, Wang S, Li P, He C, Xu P, Sha Z, Liu H, Jiang Y, Baoprasertkul P, Somridhivej B, Wang Y, Abernathy J, Guo X, Liu L, Muir W, Liu Z (2009) Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics 181:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Li P, Peatman E, Wang S, Feng J, He C, Baoprasertkul P, Xu P, Kucuktas H, Nandi S, Somridhivej B, Serapion J, Simmons M, Turan C, Liu L, Muir W, Dunham R, Brady Y, Grizzle J, Liu Z (2007) Towards the ictalurid catfish transcriptome: generation and analysis of 31, 215 catfish ESTs. BMC Genomics 8:177

    Article  PubMed  Google Scholar 

  • Maddock L, Bone Q, Rayner JMV (1994) Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge

    Google Scholar 

  • McGuigan K, Phillips PC, Postlethwait JH (2004) Evolution of sarcomeric myosin heavy chain genes: evidence from fish. Mol Biol Evol 21:1042–1056

    Article  PubMed  CAS  Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang A (2005a) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 33:W677–680

    Article  PubMed  CAS  Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang A (2005b) TargetIdentifier: a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res 33:W669–672

    Article  PubMed  CAS  Google Scholar 

  • Moss JB, Price AL, Raz E, Driever W, Rosenthal N (1996) Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 173:89–98

    Article  PubMed  CAS  Google Scholar 

  • Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T (2007) Structural basis for calcium-regulated relaxation of striated muscles at interaction sites of troponin with actin and tropomyosin. Adv Exp Med Biol 592:71–86

    Article  PubMed  Google Scholar 

  • Nwe TM, Maruyama K, Shimada Y (1999) Relation of nebulin and connectin (titin) to dynamics of actin in nascent myofibrils of cultured skeletal muscle cells. Exp Cell Res 252:33–40

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Masuoka H, Kamei S, Seko T, Koyabu S, Tsuneoka K, Tamai T, Ueda K, Nakazawa S, Sugawa M, Suzuki H, Watanabe M, Yatani R, Nakano T (1998) Rhabdomyolysis and myocardial damage induced by palytoxin, a toxin of blue humphead parrotfish. Intern Med 37:330–333

    Article  PubMed  CAS  Google Scholar 

  • Paul DM, Morris EP, Kensler RW, Squire JM (2009) Structure and orientation of troponin in the thin filament. J Biol Chem 284:15007–15015

    Article  PubMed  CAS  Google Scholar 

  • Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Ginard B (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem 259:13595–13604

    PubMed  CAS  Google Scholar 

  • Reusch TB, Veron AS, Preuss C, Weiner J, Wissler L, Beck A, Klages S, Kube M, Reinhardt R, Bornberg-Bauer E (2008) Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress. Mar Biotechnol (NY) 10:297–309

    Article  CAS  Google Scholar 

  • Rodgers ME, Karr T, Biedermann K, Ueno H, Harrington WF (1987) Thermal stability of myosin rod from various species. Biochemistry 26:8703–8708

    Article  PubMed  CAS  Google Scholar 

  • Rome LC, Loughna PT, Goldspink G (1984) Muscle fiber activity in carp as a function of swimming speed and muscle temperature. Am J Physiol 247:R272–279

    PubMed  CAS  Google Scholar 

  • Ruegg C, Veigel C, Molloy JE, Schmitz S, Sparrow JC, Fink RH (2002) Molecular motors: force and movement generated by single myosin II molecules. News Physiol Sci 17:213–218

    PubMed  Google Scholar 

  • Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008) Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol (NY) 10:227–233

    Article  CAS  Google Scholar 

  • Schneider ME, Dose AC, Salles FT, Chang W, Erickson FL, Burnside B, Kachar B (2006) A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 26:10243–10252

    Article  PubMed  CAS  Google Scholar 

  • Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, Wakeno M, Minamino T, Kondo H, Furukawa H, Nakamaru K, Naito A, Takahashi T, Ohtsuka T, Kawakami K, Isomura T, Kitamura S, Tomoike H, Mochizuki N, Kitakaze M (2007) A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 117:2812–2824

    Article  PubMed  CAS  Google Scholar 

  • Syska H, Wilkinson JM, Grand RJ, Perry SV (1976) The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153:375–387

    PubMed  CAS  Google Scholar 

  • Timson DJ, Trayer HR, Smith KJ, Trayer IP (1999) Size and charge requirements for kinetic modulation and actin binding by alkali 1-type myosin essential light chains. J Biol Chem 274:18271–18277

    Article  PubMed  CAS  Google Scholar 

  • Trayer IP, Trayer HR, Levine BA (1987) Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin. Eur J Biochem 164:259–266

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh B, Tay BH, Elgar G, Brenner S (1996) Isolation, characterization and evolution of nine pufferfish (Fugu rubripes) actin genes. J Mol Biol 259:655–665

    Article  PubMed  CAS  Google Scholar 

  • von Schalburg KR, Yazawa R, de Boer J, Lubieniecki KP, Goh B, Straub CA, Beetz-Sargent MR, Robb A, Davidson WS, Devlin RH, Koop BF (2008) Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics 9:522

    Article  Google Scholar 

  • Wang J, Jin JP (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37:14519–14528

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, Kang CH (1998) Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 5:476–483

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Sha Z, Sonstegard TS, Liu H, Xu P, Somridhivej B, Peatman E, Kucuktas H, Liu Z (2008a) Quality assessment parameters for EST-derived SNPs from catfish. BMC Genomics 9:450

    Article  PubMed  Google Scholar 

  • Wang SY, Tao Y, Liang CS, Fukushima H, Watabe S (2008b) cDNA cloning and characterization of temperature-acclimation-associated light meromyosins from grass carp fast skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 149:378–387

    Article  PubMed  Google Scholar 

  • Weaver FE, Stauffer KA, Coughlin DJ (2001) Myosin heavy chain expression in the red, white, and ventricular muscle of juvenile stages of rainbow trout. J Exp Zool 290:751–758

    Article  PubMed  CAS  Google Scholar 

  • Weeds AG, McLachlan AD (1974) Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature 252:646–649

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, Dotti C, Mann M (1998) In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. Embo J 17:967–976

    Article  PubMed  CAS  Google Scholar 

  • Wynne JW, O'Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliott NG (2008) Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. Mar Biotechnol (NY) 10:388–403

    Article  CAS  Google Scholar 

  • Xu Y, He J, Wang X, Lim TM, Gong Z (2000) Asynchronous activation of 10 muscle-specific protein (MSP) genes during zebrafish somitogenesis. Dev Dyn 219:201–215

    Article  PubMed  CAS  Google Scholar 

  • Zhang JS, Xia XJ, Chu WY, Chen DG, Fu GH, Liu Z, Chen J, Liu F, Lu SQ (2009a) Gene expression profiles of the muscle tissues of the mandarin fish, Siniperca chuatsi with cDNA microarray. Acta Hydrobiol Sin 33(1):52–59

    Google Scholar 

  • Zhang JS, Fu GH, Chu WY, Chen J, Liu Z, Liu F, Lu SQ, Liang P (2009b) cDNA cloning and expression analysis of myosin heavy chain gene (MHC) of the Mandarin fish, Sniperca kneri. Aquac Res 40:412–418

    Article  CAS  Google Scholar 

  • Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem 16:535–559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30771644; 30972263) and the Nature and Science Foundation of Hunan (09JJ6037). We thank Ying Liu for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songnian Hu or Jianshe Zhang.

Additional information

Guoqing Zhang and Wuying Chu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental 1

Supplementary figures (sequence alignments). This file containing alignments of polypeptides putatively deduced from mandrin fish muscle-related genes with other species. (DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Chu, W., Hu, S. et al. Identification and Analysis of Muscle-Related Protein Isoforms Expressed in the White Muscle of the Mandarin Fish (Siniperca chuatsi). Mar Biotechnol 13, 151–162 (2011). https://doi.org/10.1007/s10126-010-9275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9275-1

Keywords

Navigation