Skip to main content

Advertisement

Log in

Polymetallic pollution from abandoned mines in Mediterranean regions: a multidisciplinary approach to environmental risks

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Abandoned mines are a recurrent problem for nearby communities in Mediterranean regions because mine tailings represent a major source of polymetallic contamination. Metal contaminants are emitted in mining areas and dispersed by wind and water erosion in the surroundings. The goal of this literature review was to identify the specific features of polymetallic contamination arising from abandoned mines in the Mediterranean regions. Mediterranean climate conditions and local geochemical context are the most important factors that control the metal-bearing particle dispersion toward the different compartments of ecosystems. Acid mine drainage, as an important source of damage to the environment, is limited to a certain extent by the predominance of carbonate rocks in the Mediterranean regions. In opposite, aeolian contamination is specific to the semiarid conditions of the Mediterranean climate. In this context, impacts on different compartments such as agricultural soils and edible plants or human populations were underlined. The analysis of environmental laws and regulations of North and South Mediterranean countries shows that one of the main differences is the lack of identification and definition of mining waste as a public concern in the latter countries. In order to limit the transfer of contaminants from mining waste to the different components of the environment, phytostabilization of mine tailings was considered as the more adapted green technology even in the Mediterranean region where water access is limited. Finally, this review of polymetallic pollution from abandoned mines in Mediterranean regions enabled to identify priority actions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In certain cases, it is impossible to identify the companies who own a mining site and who are consequently responsible for the contamination caused by a mine. In Northern Mediterranean countries, these abandoned “orphan sites” are generally taken over by the State. In Southern Mediterranean countries, they are generally ignored or forgotten.

References

  • Adra A, Morin G, Ona-Nguema G, Maillot F, Casiot C, Bruneel O, Lebrun S, Juillot F, Brest J (2013) Arsenic scavenging by Al-substituted ferrihydrites in a circumneutral pH river impacted by the acid mine drainage of Carnoulès, Gard, France. Environ Sci Technol 47:12784–12792. doi:10.1021/es4020234

    Article  CAS  Google Scholar 

  • Alcolea A, Vázquez M, Caparrós A, Ibarra I, García C, Linares R, Rodríguez R (2012) Heavy metal removal of intermittent acid mine drainage with an open limestone channel. Miner Eng 26:86–98. doi:10.1016/j.mineng.2011.11.006

    Article  CAS  Google Scholar 

  • American Academy of Pediatrics Committee on Environmental Health (2005) Lead exposure in children: prevention, detection, and management. Pediatrics 116:1036–1046. doi:10.1542/peds.2005-1947

    Article  Google Scholar 

  • Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210:201–228. doi:10.1016/j.ijheh.2007.01.024

    Article  CAS  Google Scholar 

  • Argyraki A (2014) Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environ Geochem Health 36:677–692. doi:10.1007/s10653-013-9589-9

    Article  CAS  Google Scholar 

  • Auguy F, Fahr M, Moulin P, Brugel A, Laplaze L, El Mzibri M, Filali-Maltouf A, Doumas P (2013) Lead tolerance and accumulation in Hirschfeldia incana, a Mediterranean Brassicaceae from metalliferous mine spoils. PLoS ONE 8:e61932. doi:10.1371/journal.pone.0061932

    Article  CAS  Google Scholar 

  • Babi K (2011). Perceptions du développement minier durable par les acteurs locaux, gouvernementaux et industriels au Maroc. Mémoire. Rouyn-Noranda, Université du Québec en Abitibi-Témiscamingue, Canada. http://depositum.uqat.ca/id/eprint/548

  • Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. doi:10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152. doi:10.1016/S0168-6496(03)00028-X

    Article  CAS  Google Scholar 

  • Baker AJ, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 155–177

    Google Scholar 

  • Barbieri E, Fonturbel FE, Herbas C, Barbieri FL, Gardon J (2014) Indoor metallic pollution and children exposure in a mining city. Sci Total Environ 487:13–19. doi:10.1016/j.scitotenv.2014.03.136

    Article  CAS  Google Scholar 

  • Becerra S, Ghorbel M, Munoz M, Sappin-Didier V, Kolsi-Bensina N, Touati N, Mouri H (2015) Comprendre la vulnérabilité sociale aux contaminations minières en Tunisie: exposition chronique et construction sociale des risques sanitaires. In: Béringuier P, Blot F, Desailly B, Saqalli S (eds) Dynamiques environnementales politiques publiques et pratiques locales. L’Harmattan, Paris

    Google Scholar 

  • Béjaoui I, Kolsi Benzina N, Hamza M, Sappin-Didier V, Munoz M (2014) Transfert des métaux vers les plantes cultivées en sols carbonatés contaminés par l’activité minière (Tunisie) et exposition de la population via la chaîne alimentaire. Rencontre Sites et Sols Pollués, 18–19 novembre 2014, Paris

  • Benyassine EM, Dekayir A, Casiot C (2013) Contamination by heavy metals of mining dams, steam sediments and pit lake waters in zeida abandoned mine (High Moulouya, Morocco). IJERT 2:3758–3766

    Google Scholar 

  • Bergweiler CJ, Manning WJ (1999) Inhibition of flowering and reproductive success in spreading dogbane (Apocynum androsaemifolium) by exposure to ambient ozone. Environ Pollut 105:333–339. doi:10.1016/S0269-7491(99)00044-5

    Article  CAS  Google Scholar 

  • Bonnard R, McKone TE (2009) Integration of the predictions of two models with dose measurements in a case study of children exposed to the emissions from a lead smelter. Hum Ecol Risk Assess 15:1203–1226. doi:10.1080/10807030903304849

    Article  CAS  Google Scholar 

  • Bouchard MF, Sauve S, Barbeau B, Legrand M, Brodeur ME, Bouffard T, Limoges E, Bellinger DC, Mergler D (2011) Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Persp 119:138–143. doi:10.1289/ehp.1002321

    Article  CAS  Google Scholar 

  • Boukhalfa C, Chaguer M (2012) Characterisation of sediments polluted by acid mine drainage in the Northeast of Algeria. Int J Sediment Res 27:402–407. doi:10.1016/S1001-6279(12)60045-6

    Article  Google Scholar 

  • Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S (2013) Transfer of lead, zinc and cadmium from tailings to wheat (Triticum aestvum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192:227–236. doi:10.1016/j.geoderma.2012.08.029

    Article  CAS  Google Scholar 

  • Bruneel O, Personné JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Le Flèche A, Grimont PAD (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95:492–499. doi:10.1046/j.1365-2672.2003.02004.x

    Article  CAS  Google Scholar 

  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72:551–556. doi:10.1128/AEM.72.1.551-556.2006

    Article  CAS  Google Scholar 

  • Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, Bardil A, Morin G, Brown GE Jr, Personné JC, Le Paslier D, Schaeffer C, Van Dorsselaer A, Bertin PN, Elbaz-Poulichet F, Arsène-Ploetze F (2011) Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich Creek sediments. Microb Ecol 61:793–810. doi:10.1007/s00248-011-9808-9

    Article  Google Scholar 

  • Buchet JP, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, Ducoffre G, Deplaen P, Staessen J, Amery A, Lijnen P, Thijs L, Rondia D, Sartor F, Saintremy A, Nick L (1990) Renal effects of cadmium body burden of the general-population. Lancet 336:699–702. doi:10.1016/0140-6736(90)92201-R

    Article  CAS  Google Scholar 

  • Bulak P, Walkiewicz A, Brzezińska M (2014) Plant growth regulators-assisted phytoextraction. Biol Plant 58:1–8. doi:10.1007/s10535-013-0382-5

    Article  CAS  Google Scholar 

  • Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A (2007) Active biomonitoring of heavy metal pollution using Rosa rugose plants. Environ Pollut 149:239–245. doi:10.1016/j.envpol.2006.12.023

    Article  CAS  Google Scholar 

  • Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Figueroa-Luque E, Luque T, Figueroa ME (2013) Evaluation of zinc tolerance and accumulation potential of the coastal shrub Limoniastrum monopetalum (L.) Boiss. Environ Exp Bot 85:50–57. doi:10.1016/j.envexpbot.2012.08.007

    Article  CAS  Google Scholar 

  • Candeias C, Melo R, Freire Ávila P, Ferreira da Silva E, Salgueiro AR, Teixeira JP (2013) Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis—Panasqueira mine (Portugal). Appl Geochem 28:55–61. doi:10.1016/j.apgeochem.2013.07.009

    Article  CAS  Google Scholar 

  • Canovas CR, Olias M, Nieto JM, Galvan L (2010) Wash-out processes of evaporitic sulfate salt in the Tinto River: hydrogeochemical evolution and environmental impact. Appl Geochem 25:288–301. doi:10.1016/j.apgeochem.2009.11.014

    Article  CAS  Google Scholar 

  • Cappa JJ, Pilon-Smits EA (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275. doi:10.1007/s00425-013-1983-0

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Álvarez-Fernandez A, Sobrino-Plata J, Millán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadia J, Hernández LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791. doi:10.1111/j.1365-3040.2011.02281

    Article  CAS  Google Scholar 

  • Carrizales L, Razo I, Téllez-Hernández JI, Torres-Nerio R, Torres A, Batres LE, Cubillas AC, Díaz-Barriga F (2006) Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. Environ Res 101:1–10. doi:10.1016/j.envres.2005.07.010

    Article  CAS  Google Scholar 

  • Casiot C, Egal M, Bruneel O, Cordier MA, Bancon-Montigny C, Gomez E, Aliaume C, Elbaz-Poulichet F (2009) Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl Geochem 24:787–799. doi:10.1016/j.apgeochem.2009.01.006

    Article  CAS  Google Scholar 

  • Cassard D, Bertrand G, Billa M, Serrano J-J, Tourlière B, Angel J-M, Gaal G (2015) ProMine Anthropogenic Concentrations (AC) database: new tools to assess primary and secondary mineral resources in Europe. In: Weihed Pär (ed) 3D, 4D and predictive modelling of major mineral belts in Europe, mineral resource reviews, Springer International Publishing, Switzerland, pp 9–58. doi:10.1007/978-3-319-17428-0_2

  • Castillo S, De la Rosa JD, Sanchez de la Campa AM, Gonzalez-Castanedo Y, Fernandez-Caliani JC, Gonzalez I, Romero A (2013) Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci Total Environ 449:363–372. doi:10.1016/j.scitotenv.2013.01.076

    Article  CAS  Google Scholar 

  • Chaintreuil C, Rigault F, Moulin L, Jaffré T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 73:8018–8022. doi:10.1128/AEM.01431-07

    Article  CAS  Google Scholar 

  • Checkoway H, Heyer NJ, Demers PA (1996) An updated mortality follow-up study of Florida phosphate industry workers. Am J Ind Med 30:452–460. doi:10.1002/(SICI)1097-0274(199610)30:4<452:AID-AJIM11>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:2431–2444. doi:10.1111/1462-2920.12114

    Article  CAS  Google Scholar 

  • Cidu R, Biddau R, Fanfani L (2009) Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor 30:125–132. doi:10.1016/j.gexplo.2008.02.003

    Article  CAS  Google Scholar 

  • Cigagna M, Dentoni V, Grosso B, Massacci G (2014) Emissions of fugitive dust from mine dumps and tailing basins in South-Western Sardinia. In: Drebenstedt C, Singhal R (eds) Mine planning and equipment selection. Springer International Publishing, pp 739–747. doi:10.1007/978-3-319-02678-7_72

  • Clemente R, Paredes C, Bernal MP (2007) A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain). Agr Ecosyst Environ 118:319–326. doi:10.1016/j.agee.2006.06.002

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. An Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    Article  CAS  Google Scholar 

  • Colzi I, Rocchi S, Rangoni M, Del Bubba M, Gonnelli C (2014) Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L. Environ Sci Pollut Res Int 21:10960–10969. doi:10.1007/s11356-014-3045-y

    Article  CAS  Google Scholar 

  • Commission Regulation EC (2006) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance). Official J Eur Commun L 364 of 20 December 2006, pp. 5–24. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006R1881. Accessed 20 Sept 2015

  • Coskun M, Cayir A, Coskun M, Kilic O (2011) Heavy metal deposition in moss samples from East and South Marmara Region, Turkey. Environ Monit Assess 174:219–227. doi:10.1007/s10661-010-1452-1

    Article  CAS  Google Scholar 

  • Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C (2012) In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ Sci Tech 46:6252–6260. doi:10.1021/es3006942

    Article  CAS  Google Scholar 

  • Diaby N, Dold B, Holliger C, Pfeifer HR, Johnson DB, Hallberg KB (2007) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9:298–307. doi:10.1111/j.1462-2920.2006.01138.x

    Article  CAS  Google Scholar 

  • Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the management of waste from extractive industries and amending Directive 2004/35/EC—Statement by the European Parliament, the Council and the Commission. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0021. Accessed 1 Sept 2015

  • Dold B (2014) Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals 4:621–641. doi:10.3390/min4030621

    Article  CAS  Google Scholar 

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55. doi:10.1016/S0375-6742(01)00174-1

    Article  CAS  Google Scholar 

  • Dor F, Denys S (2011) La nécessaire complémentarité des approches environnementales et sanitaires dans la gestion des sols pollués: l’exemple de Saint-Laurent-le-Minier. Envir Risques Santé 10:323–330. doi:10.1684/ers.2011.0474

    Google Scholar 

  • Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632

    CAS  Google Scholar 

  • Egal M, Casiot C, Morin G, Elbaz-Poulichet F, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations in Reigous Creek (Southern France). Appl Geochem 25:1949–1957. doi:10.1016/j.apgeochem.2010.10.012

    Article  CAS  Google Scholar 

  • El Hachimi ML, El Founti L, Bouabdli A, Saïdi N, Fekhoui M, Tassé N (2007) Pb et As dans des eaux alcalines minières: contamination, comportement et risques (mine abandonnée de Zeïda, Maroc). Rev Sci Eau 20:1–13. doi:10.7202/014903ar

    Google Scholar 

  • Elbaz-Poulichet F, Braungardt C, Achterberg E, Morley N, Cossa D, Beckers J, Nomérange P, Cruzado A, Leblanc M (2001) Metal biogeochemistry in the Tinto-Odiel Rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Cont Shelf Res 21:1961–1973. doi:10.1016/S0278-4343(01)00037-1

    Article  Google Scholar 

  • Espana J, Lopez Pamo E, Santofimia Pastor E (2007) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): field and laboratory rates. J Geochem Explor 92:120–132. doi:10.1016/j.gexplo.2006.08.010

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi:10.1111/j.1365-3040.2005.01327.x

    Article  CAS  Google Scholar 

  • Frau F, Ardau C (2003) Geochemical controls on arsenic distribution in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining. Appl Geochem 18:1373–1386. doi:10.1016/S0883-2927(03)00057-X

    Article  CAS  Google Scholar 

  • Frérot H, Lefèbvre C, Gruber W, Collin C, Dos Santos A, Escarré J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65. doi:10.1007/s11104-005-5315-4

    Article  CAS  Google Scholar 

  • Galan E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421. doi:10.1016/S0883-2927(02)00092-6

    Article  CAS  Google Scholar 

  • Garcia-Lorenzo C, Pérez-Sirvent C, Martínez-Sánchez J, Molina-Ruiz J (2012) Trace elements contamination in an abandoned mining site in a semiarid zone. J Geochem Explor 113:23–35. doi:10.1016/j.gexplo.2011.07.001

    Article  CAS  Google Scholar 

  • García-Rizo C, Martínez-Sánchez J, Pérez-Sirvent C (1999) Environmental transfer of zinc in calcareous soils in zones near old mining sites with semi-aridic climate. Chemosphere 39:209–227. doi:10.1016/S0045-6535(99)00104-6

    Article  Google Scholar 

  • Gemici Ü (2008) Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Alaşehir, Turkey). Environ Monit Assess 147:93–106. doi:10.1007/s10661-007-0101-9

    Article  CAS  Google Scholar 

  • Ghorbel M, Munoz M, Courjault-Radé P, Destrigneville C, de Parseval P, Souissi R, Souissi F, Ben Mammou A, Abdeljaouad S (2010) Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miners’ village of Jebel Ressas (NE Tunisia). Eur J Mineral 22:639–649. doi:10.1127/0935-1221/2010/0022-2037

    Article  CAS  Google Scholar 

  • Ghorbel M, Munoz M, Solmon F (2014) Health hazard prospecting by modeling wind transfer of metal-bearing dust from mining waste dumps: application to Jebel Ressas Pb–Zn–Cd abandoned mining site (Tunisia). Environ Geochem Health 36:935–951. doi:10.1007/s10653-014-9610-y

    Article  CAS  Google Scholar 

  • Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126. doi:10.1002/1097-0274(200011)38:5<606:AID-AJIM13>3.0.CO;2-A

    Article  CAS  Google Scholar 

  • Gökçekus H, Kabdasli S, Kabdasli I, Turker U, Tunay O, Olmez T (2003) Pollution of coastal region impacted by acid mine drainage in Morphou Bay, Northern Cyprus. J Environ Sci Health A 38:1445–1457. doi:10.1081/ESE-120021469

    Article  CAS  Google Scholar 

  • Grande JA, Valente T, de la Torre ML, Santisteban M, Ceron JC, Perez-Ostale E (2014) Characterization of acid mine drainage sources in the Iberian Pyrite Belt: base methodology for quantifying affected areas and for environmental management. Environ Earth Sci 71:2729–2738. doi:10.1007/s12665-013-2652-0

    Article  CAS  Google Scholar 

  • Guittonny-Philippe A, Masotti V, Höhener P, Boudenne J-L, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16. doi:10.1016/j.envint.2013.11.016

    Article  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res Int 20:2150–2161. doi:10.1007/s11356-013-1485-4

    Article  CAS  Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco): 1. Environmental characterization. Mine Water Environ 27:145–159. doi:10.1007/s10230-008-0036-6

    Article  CAS  Google Scholar 

  • Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453. doi:10.1016/j.hydromet.2009.12.013

    Article  CAS  Google Scholar 

  • Hattab S, Hedheli A, Banni M, Boussetta H, Herrero M (2010) Effects of cadmium and copper on pollen germination and fruit set in pea (Pisum sativum L.). Sci Hort 125:551–555. doi:10.1016/j.scienta.2010.05.031

    Article  CAS  Google Scholar 

  • Hayes SM, Root RA, Perdrial N, Maier RM, Chorover J (2014) Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochim Cosmochim Act 141:240–257. doi:10.1016/j.gca.2014.05.030

    Article  CAS  Google Scholar 

  • Héry M, Casiot C, Resongles E, Gallice Z, Bruneel O, Desoeuvre O, Delpoux S (2014) Release of arsenite, arsenate and methyl-arsenic species from streambed sediment impacted by acid mine drainage: a microcosm study. Environ Chem 11:514–524. doi:10.1071/en13225

    Article  CAS  Google Scholar 

  • Hogan K, Marcus A, Smith R, White P (1998) Integrated exposure uptake biokinetic model for lead in children: empirical comparisons with epidemiologic data. Environ Health Perspect 106:1557–1567. doi:10.1289/ehp.98106s61557

    Article  CAS  Google Scholar 

  • Hornung RW, Meinhardt TJ (1987) Quantitative risk assessment of lung cancer in U.S. uranium miners. Health Phys 52:417–430. doi:10.1097/00004032-198704000-00002

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68:167–182. doi:10.1093/bmb/ldg032

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473. doi:10.1016/s0923-2508(03)00114-1

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. Taylor & Francis, London. doi:10.1017/s0014479711000743

    Google Scholar 

  • Kakosimos KE, Assael MJ, Lioumbas JS, Spiridis AS (2011) Atmospheric dispersion modeling the fugitive particulate matter from overburden dumps withe numerical and integral models. At Pollut Res 2:24–33. doi:10.5094/apr.2011.004

    Article  Google Scholar 

  • Kimball BA, Broshears RE, McKnight DM, Bencala KE (1994) Effects of instream pH modification on transport of sulfide-oxidation products in ACS symposium series pp 224–243. doi: 10.1021/bk-1994-0550.ch016

  • Klonowska A, Chaintreuil C, Tisseyre P, Miché L, Melkonian R, Ducousso M, Laguerre G, Brunel B, Moulin L (2012) Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiol Ecol 81:618–635. doi:10.1111/j.1574-6941.2012.01393.x

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. An Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156

    Article  CAS  Google Scholar 

  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS (2012) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050. doi:10.1038/ismej.2012.139

    Article  CAS  Google Scholar 

  • Laraqui CH, Caubet A, Harourate K, Laraqui O, Verger C (1999) Occupational health and safety in the mining industry in Morocco. La Medicina del lavoro 90:693–703. doi:10.1179/oeh.1999.5.4.316

    CAS  Google Scholar 

  • Lavazzo P, Adamo P, Boni M, Hillier S, Zampella M (2012) Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. J Geochem Explor 113:56–67. doi:10.1016/j.gexplo.2011.06.001

    Article  CAS  Google Scholar 

  • Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Appl Geochem 16:1377–1386. doi:10.1016/S0883-2927(01)00038-5

    Article  CAS  Google Scholar 

  • Lewin MD, Sarasua S, Jones PA (1999) A multivariate linear regression model for predicting children’s blood lead levels based on soil lead levels: a study at four superfund sites. Environ Res 81:52–61. doi:10.1006/enrs.1998.3952

    Article  CAS  Google Scholar 

  • Lottermoser BG (2010) Mine wastes. Springer, Berlin. doi:10.1007/978-3-642-12419-8

    Book  Google Scholar 

  • Mahieu S, Frérot H, Vidal C, Galiana A, Heulin K, Maure L, Brunel B, Lefèbre C, Escarré J, Cleyet-Marel JC (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342:405–417. doi:10.1007/s11104-010-0705-7

    Article  CAS  Google Scholar 

  • Maillot F, Morin G, Juillot F, Bruneel O, Casiot C, Ona-Nguema G, Wang Y, Lebrun S, Aubry E, Vlaic G, Brown GE Jr (2013) Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: comparison with biotic and abiotic model compounds and implications for As remediation. Geochim Cosmochim Act 104:310–329. doi:10.1016/j.gca.2012.11.016

    Article  CAS  Google Scholar 

  • Malcoe LH, Lynch RA, Kegler MC, Skaggs VJ (2002) Lead sources, behaviors, and socioeconomic factors in relation to blood lead of native American and white children: a community-based assessment of a former mining area. Environ Health Perspect 110:221–231. doi:10.1289/ehp.02110s2221

    Article  CAS  Google Scholar 

  • Martinez-Frias J (1997) Mine waste pollutes Mediterranean. Nature 388:120. doi:10.1038/40506

    Article  CAS  Google Scholar 

  • Martinez-Sanchez MJ, Garcia-Lorenzo ML, Perez-Sirvent C, Bech J (2012) Trace element accumulation in plants from an aridic area affected by mining activities. J Geochem Explor 123:8–12. doi:10.1016/j.gexplo.2012.01.007

    Article  CAS  Google Scholar 

  • Martos-Miralles P, Sansano Sánchez A, Baños Páez P, Navarro Cano JA, Méndez Pérez T (2001) Medio Ambiente y Empleo en la Sierra Minera de Cartagena–La Unión. In: Edita Fundación Sierra Minera. La Unión (Murcia)

  • Metallogenic Map of Europe and neighbouring countries (1997) Scale 1/10 000 000. Main author: Prof. Gunnar Juve (NGU-Norway), CGMW-Geological Survey of Norway (NGU) co-edition. http://ccgm.org/en/catalogue/121-carte-metallogenique-de-l-europe.html

  • Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E (2012) Facing climatic and anthropogenic changes in the Mediterranean basin: what will be the medium-term impact on water stress? C R Geoscience 344:432–440. doi:10.1016/j.crte.2012.07.006

    Article  Google Scholar 

  • Ministry of the Environment, 2011. Soil, groundwater and sediment standards for the use under part XV.1 of the environmental protection act. Ontario, Canada, PIBS 7382e01

  • Monterroso C, Rodríguez F, Chaves R, Diez J, Becerra-Castro C, Kidd P, Macías F (2014) Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl Geochem 44:3–11. doi:10.1016/j.apgeochem.2013.09.001

    Article  CAS  Google Scholar 

  • Moodie SM, Evans EL (2011) Ethical issues in using children’s blood lead levels as a remedial action objective. Am J Public Health 101:156–160. doi:10.2105/ajph.2011.300226

    Article  Google Scholar 

  • Moreno T, Oldroyd A, McDonald I, Gibbons W (2007) Preferential fractionation of trace metals-metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water Air Soil Poll 179:93–105. doi:10.1007/s11270-006-9216-9

    Article  CAS  Google Scholar 

  • Murciego AM, Sánchez AG, González MA, Gil EP, Gordillo CT, Fernández JC, Triguero TB (2007) Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ Pollut 145:15–21. doi:10.1016/j.envpol.2006.04.004

    Article  CAS  Google Scholar 

  • Navarro A, Collado D, Carbonell M, Sanchez JA (2004) Impact of mining activities on soils in a semi-arid environment: sierra Almagrera district, SE Spain. Environ Geochem Health 26:383–393. doi:10.1007/s10653-005-5361-0

    Article  CAS  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez M, Vidal J, Tovar P, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193. doi:10.1016/j.gexplo.2007.04.011

    Article  CAS  Google Scholar 

  • Nieto JM, Sarmiento AM, Canovas CR, Olias M, Ayora C (2013) Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environ Sci Pollut Res 20:7509–7519. doi:10.1007/s11356-013-1634-9

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484. doi:10.1111/j.1365-3040.2011.02400.x

    Article  CAS  Google Scholar 

  • Nonnoi F, Chinnaswamy A, García de la Torre VS, Coba de la Peña T, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59. doi:10.1016/j.apsoil.2012.06.004

    Article  Google Scholar 

  • Nordstrom DK (2009) Acid rock drainage and climate change. J Geochem Explor 100:97–104. doi:10.1016/j.gexplo.2008.08.002

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107. doi:10.1111/j.1469-8137.2007.02162.x

    Article  CAS  Google Scholar 

  • Papassiopi N, Zaharia C, Xenidis A, Adam K, Liakopoulos A, Romaidis I (2014) Assessment of contaminants transport in a watershed affected by acid mine drainage, by coupling hydrological and geochemical modeling tools. Miner Eng 64:78–91. doi:10.1016/j.mineng.2014.04.002

    Article  CAS  Google Scholar 

  • Párraga-Aguado I, Álvarez-Rogel J, González-Alcaraz MN, Jiménez-Cárceles FJ, Conesa HM (2013) Assessment of metal (loid) s availability and their uptake by Pinus halepensis in a Mediterranean forest impacted by abandoned tailings. Ecol Eng 58:84–90. doi:10.1016/j.ecoleng.2013.06.013

    Article  Google Scholar 

  • Pinochet H, De Gregori I, Lobos MG, Fuentes E (1999) Selenium and copper in vegetables and fruits grown on longterm impacted soil from Valparaiso region, Chile. Bull Environ Contam Toxicol 63:327–334. doi:10.1007/s001289900984

    Article  CAS  Google Scholar 

  • Protonotarios V, Petsas N, Moutsatsou A (2002) Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece. J Air Waste Manage Assoc 52:1263–1273. doi:10.1080/10473289.2002.10470861

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, López-Soler A, Plana F (2000) Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Doñana area, Southwest Spain. Atmos Environ 34:239–253. doi:10.1016/s1352-2310(99)00228-9

    Article  CAS  Google Scholar 

  • Ragas AMJ, Brouwer FPE, Buchner FL, Hendriks HWM, Huijbregts MAJ (2009) Separation of uncertainty and interindividual variability in human exposure modeling. J Expo Sci Environ Epidemiol 19:201–212. doi:10.1038/jes.2008.13

    Article  CAS  Google Scholar 

  • Remy E, Duque P (2014) Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 5:201–231. doi:10.3389/fphys.2014.00201

    Article  Google Scholar 

  • Report of the Court of Auditors (2003) L’Etat face aux enjeux industriels et environnementaux: l’exemple des mines d’or de Salsigne. In Rapport au Président de La République, suivi des réponses des administrations, collectivités, organismes et entreprises, pp 357–385

  • Resongles E, Casiot C, Freydier R, Dezileau L, Viers J, Elbaz-Poulichet F (2014) Persisting impact of historic mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci Total Environ 481:509–521. doi:10.1016/j.scitotenv.2014.02.078

    Article  CAS  Google Scholar 

  • Roccotiello E, Serrano HC, Mariotti MG, Branquinho C (2014) Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere 119:1372–1378. doi:10.1016/j.chemosphere.2014.02.031

    Article  CAS  Google Scholar 

  • Rodier J (1955) Manganese poisoning in moroccan miners. Brit J Ind Med 12:21–35. doi:10.1136/oem.12.1.21

    CAS  Google Scholar 

  • Romero A, Gonzalez I, Galan E (2012) Trace elements absorption by citrus in a heavily polluted mining site. J Geochem Explor 113:76–85. doi:10.1016/j.gexplo.2011.11.005

    Article  CAS  Google Scholar 

  • Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Syst Appl Microbiol 31:68–77. doi:10.1016/j.syapm.2007.09.001

    Article  Google Scholar 

  • Sanchez de la Campa AM, de la Rosa J, Querol X, Alastuey A, Mantilla E (2007) Geochemistry and origin of PM10 in the Huelva region, Southwestern Spain. Environ Res 103:305–316. doi:10.1016/j.envres.2006.06.011

    Article  CAS  Google Scholar 

  • Sanchez de la Campa AM, De la Rosa JD, Fernández-Caliani JC, González-Castanedo Y (2011) Impact of abandoned mine waste on atmospheric respirable particulate matter in the historic mining district of Rio Tinto (Iberian Pyrite Belt). Environ Res 111:1018–1023. doi:10.1016/j.envres.2011.07.001

    Article  CAS  Google Scholar 

  • Sánchez-Andrea I, Knittel K, Amann R, Amils R, Sanz JL (2012) Quantification of Tinto River sediment microbial communities: the importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl Environ Microbiol 78:4638–4645. doi:10.1128/aem.00848-12

    Article  CAS  Google Scholar 

  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350. doi:10.1016/j.hydromet.2010.01.012

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi:10.1093/jexbot/53.372.1351

    Google Scholar 

  • Sims DB, Hooda PS, Gillmore GK (2013) Mining activities and associated environmental impacts in arid climates: a literature review. Environ Pollut 2:22–43. doi:10.5539/ep.v2n4p22

    Article  CAS  Google Scholar 

  • Souissi R, Souissi F, Ghorbel M, Munoz M, Courjault-Radé P (2014) Mobility of Pb, Zn and Cd in a soil developed on carbonated bedrock in a semi-arid climate and contaminated by Pb–Zn tailing, Jebel Ressas (NE Tunisia). Environ Earth Sci. doi:10.1007/s12665-014-3634-6

  • Soussou S, Mahieu S, Brunel B, Escarré J, Lebrun M, Banni M, Boussetta H, Cleyet-Marel JC (2013) Zinc accumulation patterns in four Anthyllis vulneraria subspecies supplemented with mineral nitrogen or grown in the presence of their symbiotic bacteria. Plant Soil 371:423–434. doi:10.1007/s11104-013-1698-9

    Article  CAS  Google Scholar 

  • Souza VL, de Almeida AA, Lima SG, de Cascardo JCM, da Silva DC, Mangabeira PA, Gomes FP (2011) Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals 24:59–71. doi:10.1007/s10534-010-9374-5

    Article  CAS  Google Scholar 

  • Stayner L, Smith R, Thun M, Schnorr T, Lemen R (1992) A dose-response analysis and quantitative assessment of lung cancer risk and occupational cadmium exposure. Ann Epidemiol 2:177–194. doi:10.1016/1047-2797(92)90052-r

    Article  CAS  Google Scholar 

  • Steenland K, Mannetje A, Boffetta P, Stayner L, Attfield M, Chen J, Dosemeci M, DeKlerk N, Hnizdo E, Koskela R, Checkoway H (2001) Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control 12:773–784. doi:10.1023/a:1012214102061

    Article  CAS  Google Scholar 

  • Streten-Joyce C, Manning J, Gibb KS, Neilan BA, Parry DL (2013) The chemical composition and bacteria communities in acid and metalliferous drainage from the wet-dry tropics are dependent on season. Sci Total Environ 443:65–79. doi:10.1016/j.scitotenv.2012.10.024

    Article  CAS  Google Scholar 

  • Taylor GJ (1987) Exclusion of metals from the symplasm: a possible mechanism of metal tolerance in higher plants. J Plant Nutr 10:1213–1222. doi:10.1080/01904168709363649

    Article  CAS  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Invited reviews: carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol Pathol 31:575–588. doi:10.1080/01926230390242007

    CAS  Google Scholar 

  • Torny D (2013) Managing an everlastingly polluted of world: food policies and community health action in the French West Indies. In: Boudia S, Jas N (eds) Toxicants, Health and regulations since 1945, SSHM number 9. Pickering & Chatto, Londres, pp 117–134. doi:10.1093/shm/hkt084

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl Microbiol Biotechnol 97:7529–7541. doi:10.1007/s00253-013-4954-2

    Article  CAS  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov, a novel metal resistant symbiont of Anthyllis vulneria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855. doi:10.1099/ijs.0.003327-0

    Article  CAS  Google Scholar 

  • Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Delpoux S, Fahy A, Javerliat F, Bouchez O, Duran R, Bertin PN, Elbaz-Poulichet F, Lauga B (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and others drivers along an acid mine drainage. FEMS Microb Ecol 90:247–263. doi:10.1111/1574-6941.12394

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42. doi:10.1007/s00244-007-9097-y

    Article  CAS  Google Scholar 

  • WHO (2005) Air quality guidelines for Europe. Second Edition. World Health Organization Regional Publications, European series

  • WHO (2011) Guidelines for drinking-water quality. Fourth Edition. World Health Organization

  • Williams DJ, Currey NA (2002) Engineering closure of an open pit gold operation in a semi-arid climate. Int J Min Reclamat Environ 16:270–288. doi:10.1076/ijsm.16.4.270.8632

    Article  Google Scholar 

  • Wong SC, Li XD, Zhang G, Qi SH, Min YS (2002) Heavy metals in agricultural soils of Pearl River Delta, South China. Environ Pol 119:33–44. doi:10.1016/S0269-7491(01)00325-6

    Article  CAS  Google Scholar 

  • Zou B, Wilson JG, Zhan FB, Zeng Y (2009) Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit 11:475–490. doi:10.1039/b813889c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the French MISTRALS-SICMED program (Surfaces et Interfaces Continentales en MEDiterranée/Continental Surfaces and Interfaces in the Mediterranean Area – www.sicmed.net/) for financial and logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Doumas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doumas, P., Munoz, M., Banni, M. et al. Polymetallic pollution from abandoned mines in Mediterranean regions: a multidisciplinary approach to environmental risks. Reg Environ Change 18, 677–692 (2018). https://doi.org/10.1007/s10113-016-0939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-0939-x

Keywords

Navigation