Skip to main content

Advertisement

Log in

Mapping fire behaviour under changing climate in a Mediterranean landscape in Greece

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Understanding how future climate periods influence fire behaviour is important for organizing fire suppression strategy and management . The meteorological factors are the most critical parameters affecting fire behaviour in natural landscapes; hence, predicting climate change effects on fire behaviour could be an option for optimizing firefighting resource management. In this study, we assessed climate change impacts on fire behaviour parameters (rate of fire growth, rate of spread and fireline intensity) for a typical Mediterranean landscape of Greece. We applied the minimum travel time fire simulation algorithm by using the FlamMap software to characterize potential response of fire behaviour for three summer periods. The results consisted of simulated spatially explicit fire behaviour parameters of the present climate (2000) and three future summer periods of 2050, 2070 and 2100, under the A1B emissions scenario. Statistical significant differences in simulation outputs among the four examined periods were obtained by using the Tukey’s significance test. Statistical significant differences were mainly obtained for 2100 compared to the present climate due to the significant projected increase in the wind speed by the end of the century. The analysis and the conclusions of the study can be important inputs for fire suppression strategy and fire management (deployment of fire suppression resources, firefighter safety and exposure, transportation logistics) quantifying the effect that the expected future climate periods can have on fire suppression difficulty in Mediterranean landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguado I, Chuvieco E, Boren R, Nieto H (2007) Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. Int J Wildland Fire 16:390–397. doi:10.1071/WF06136

    Article  Google Scholar 

  • Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN, Giannakopoulos C, Martin E, Olesen JE, Shvidenko A (2007) Europe Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 541–580

  • Amatulli G, Camia A, San-Miguel-Ayanz J (2013) Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ 450–451C:209–222. doi:10.1016/j.scitotenv.2013.02.014

    Article  Google Scholar 

  • Amiro B, Stocks B, Alexander M, Flannigan M, Wotton B (2001) Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int J Wildland Fire 10:405–413. doi:10.1071/WF01038

    Article  Google Scholar 

  • Andrews P, Heinsch F, Schelvan L (2011). How to generate and interpret fire characteristics charts for surface and crown fire behavior. USDA, Forest Service, Rocky Mountain Research Station, General Technical Report, RMRS-GTR-253. Fort Collins, CO

  • Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D (2007) Evaluation of FARSITE simulator in Mediterranean maquis. Int J Wildland Fire 16:563–572. doi:10.1071/WF06070

    Article  Google Scholar 

  • Arca B, Pellizzaro G, Duce P, Salis M, Bacciu V, Spano D, Ager A, Finney M, Scoccimarro E (2012) Potential changes in fire probability and severity under climate change scenarios in Mediterranean areas. In: Spano D, Bacciu V, Salis M, Sirca C (eds) Modelling fire behaviour and risk. Nuova Stampa color, Sassari, pp 92–98

    Google Scholar 

  • Arroyo L, Pascual C, Manzanera J (2008) Fire models and methods to map fuel types: the role of remote sensing. For Ecol Manag 256:1239–1252. doi:10.1016/j.foreco.2008.06.048

    Article  Google Scholar 

  • Bank of Greece Study (2011) The environmental, economic and social impacts of climate change in Greece

  • Bedia J, Herrera S, Camia A, Moreno J, Gutiérrez J (2013) Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim Change 122:185–199. doi:10.1007/s10584-013-1005-z

    Article  Google Scholar 

  • Bonham C (1989) Measurements for terrestrial vegetation. Wiley, New York

    Google Scholar 

  • Brown J, Oberheu R, Johnston C (1982) Handbook for inventorying surface fuels and biomass in the Interior West. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-129. Ogden

  • Brown J, Hall L, Westerling L (2004) The impact of twenty-first century climate change on wildland fire danger in the Western United States: an application perspective. Clim Change 62:365–388. doi:10.1023/B:CLIM.0000013680.07783.de

    Article  Google Scholar 

  • Christensen JH, Kjellström Ε, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194. doi:10.3354/cr00916

    Article  Google Scholar 

  • Collins B, Omi P, Chapman P (2006) Regional relationships between climate and wildfire burned area in the Interior West, USA. Can J For Res 36:699–709. doi:10.1139/x05-264

    Article  Google Scholar 

  • de Groot W, Bothwell P, Carlsson D, Logan K (2003) Simulating the effects of future fire regimes on western Canadian boreal forests. J Veg Sci 14:355–364. doi:10.1111/j.1654-1103.2003.tb02161.x

    Article  Google Scholar 

  • Dimitrakopoulos A (2001) PYROSTAT—a computer program for forest fire data inventory and analysis in Mediterranean countries. Environ Model Softw 16:351–359. doi:10.1016/S1364-8152(00)00088-8

    Article  Google Scholar 

  • Dimitrakopoulos A (2002) Mediterranean fuel models and potential fire behaviour in Greece. Int J Wildland Fire 11:127–130. doi:10.1071/WF02018

    Article  Google Scholar 

  • Dimitrakopoulos A, Bemmerzouk A (2003) Predicting live herbaceous moisture content from a seasonal drought index. Int J Biometeorol 47:73–79. doi:10.1007/s00484-002-0151-1

    CAS  Google Scholar 

  • Dimitrakopoulos A, Mitsopoulos I (2006) Thematic report on forest fires in the Mediterranean Region. In: Vuorinen A (ed) Global forest resources assessment 2005, Forest Fire Management Working Paper 8, FAO

  • Dimitrakopoulos A, Panov P (2001) Pyric properties of some dominant Mediterranean vegetation species. Int J Wildland Fire 10:23–27. doi:10.1071/WF01003

    Article  Google Scholar 

  • Dimitrakopoulos A, Vlahou M, Anagnostopoulou C, Mitsopoulos I (2011) Impact of drought on wildland fires in Greece; Implications of climatic change? Clim Change 109:331–347. doi:10.1007/s10584-011-0026-8

    Article  Google Scholar 

  • ENSEMBLES Deliverable D3.2.2: RCM-specific weights based on their ability to simulate the present climate, calibrated for the ERA40-based simulations (http://ensembles-eu.metoffice.com)

  • European Commission (2011) Forest fires in Europe 2010. Official Publication of the European Communities, EUR 24910

  • Finney M (2002) Fire growth using minimum travel time methods. Can J For Res 32:1420–1424. doi:10.1139/X02-068

    Article  Google Scholar 

  • Finney M (2006) An overview of FlamMap modeling capabilities. In: Andrews P, Butler B (eds.) Fuels Management—how to measure success. In: Conference Proceedings. RMRS-P-41. pp 213–219

  • Flannigan M, Stocks B, Wotton M (2000) Climate change and forest fires. Sci Total Environ 262:221–229. doi:10.1016/S0048-9697(00)00524-6

    Article  CAS  Google Scholar 

  • Flanningan M, Van Wagner C (1991) Climate change and wildfire in Canada. Can J For Res 21:66–72. doi:10.1139/x91-010

    Article  Google Scholar 

  • Forthofer J (2007) Modeling wind in complex terrain for use in fire spread prediction Fort Collins, CO. Colorado State University, Ph.D.Thesis

  • Fried J, Gilless W, Riley T, Moody C, Simon K, Hayhoe M, Moritz M, Stephens S, Torn M (2008) Predicting the effect of climate change on wildfire behaviour and initial attack success. Clim Change 87:193–213. doi:10.1007/s10584-007-9360-2

    Article  Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess C (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global Planet Change 68:209–224. doi:10.1016/j.gloplacha.2009.06.001

    Article  Google Scholar 

  • Giannakopoulos C, Kostopoulou E, Varotsos KV, Tziotziou K, Plitharas A (2011) An integrated assessment of climate change impacts for Greece in the near future. Reg Environ Change 11(4):829–843. doi:10.1007/s10113-011-0219-8

    Article  Google Scholar 

  • Giannakopoulos C, Le Sager P, Moriondo M, Bindi M, Karali A, Hatzaki M, Kostopoulos E (2012) Comparison of fire danger indices in the Mediterranean for present day conditions. i-Forest 5:197–203. doi:10.3832/ifor0622-005

    Google Scholar 

  • Good P, Morioindo M, Giannakopoulos C, Bindi M (2008) The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies. Int J Wildand Fire 17:155–165. doi:10.1071/WF07001

    Article  Google Scholar 

  • Haight R, Fried J (2007) Deploying wildland fire suppression resources with a scenario-based standard response model. Inf Syst Oper Res 44:31–39. doi:10.3138/infor.45.1.31

    Google Scholar 

  • Hall B, Brown J (2003) A comparison of precipitation and drought indices related to fire activity in the US. In: Proceedings of the 5th symposium on fire and forest meteorology. American Meteorological Society, Orlando FL

  • Herrera S, Bedia J, Gutierrez JM, Fernandez J, Moreno J (2013) On the projection of future fire danger conditions with various instantaneous/mean-daily data sources. Clim Change 118:827–840. doi:10.1007/s10584-012-0667-2

    Article  Google Scholar 

  • Hewitson B, Janetos A, Carter T, Giorgi F, Jones R, Kwon W, Mearns, L, Schipper E, van Aalst M (2014). Regional context. In: Barros V, Field C, Dokken D, Mastrandrea M, Mach K, Bilir K, Chatterjee M, Ebi K, Estrada Y, Genova R, Girma B, Kissel E, Levy A, MacCracken S, Mastrandrea P, White L (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working Group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, pp 1133–1197

  • Jahdi R, Salis M, Darvishsefat A, Mostafavi M, Alcasena F, Etemad V, Lozano O, Spano D (2015) Calibration of FARSITE simulator in northern Iranian forests. Nat Hazards Earth Syst 15:443–459. doi:10.5194/nhess-15-443-2015

    Article  Google Scholar 

  • Kallos G, Kotroni V, Lagouvardos K, Papadopoulos A (1998) On the long range transport of air pollutants from Europe to Africa. Geophys Res Lett 25:619–622. doi:10.1029/97GL03317

    Article  CAS  Google Scholar 

  • Karali A, Hatzaki M, Giannakopoulos C, Roussos A, Xanthopoulos G, Tenentes V (2014) Sensitivity and evaluation of current fire risk and future projections due to climate change: the case study of Greece. Nat Hazards Earth Syst Sci 14:143–153. doi:10.5194/nhess-14-143-2014

    Article  Google Scholar 

  • Kostopoulou E, Giannakopoulos C, Hatzaki M, Tziotziou K (2012) Climate extremes in the NE Mediterranean: assessing the E-OBS dataset and regional climate simulations. Clim Res 54:249–270. doi:10.3354/cr01110

    Article  Google Scholar 

  • Kotroni V, Lagouvardos K, Lalas D (2001) The effect of the island of Crete on the Etesian winds over the Aegean Sea. Q J R Meteorol Soc 127:1917–1937. doi:10.1002/qj.49712757604

    Article  Google Scholar 

  • Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Nioti F, Pleniou M, Mallinis G, Arianoutsou M (2013) On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire 22:493–507. doi:10.1071/WF12003

    Article  Google Scholar 

  • Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers J (2003) Simulation of present-day climate in RACMO2: first results and model developments. KNMI Technical Report 252

  • Maingi J, Henry M (2007) Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int J Wildland Fire 16:23–33. doi:10.1071/WF06007

    Article  Google Scholar 

  • Mallinis G, Mitsopoulos I, Dimitrakopoulos A, Gitas I, Karteris M (2008) Integration of local scale fuel type mapping and fire behaviour prediction using high spatial resolution imagery. IEEE J Sel Topics Appl Earth Observ 4:230–238. doi:10.1109/JSTARS.2008.2011298

    Article  Google Scholar 

  • Mallinis G, Koutsias N, Arianoutsou M (2014) Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci Total Environ 490:262–278. doi:10.1016/j.scitotenv.2014.04.129

    Article  CAS  Google Scholar 

  • Miller J, Yool S (2002) Modeling fire in semi-desert grassland/oak woodland: the spatial implications. Ecol Model 153:229–245. doi:10.1016/S0304-3800(02)00015-7

    Article  Google Scholar 

  • Mitsopoulos I, Dimitrakopoulos A (2014) Estimation of canopy fuel characteristics of Aleppo pine (Pinus halepensis Mill.) forests in Greece based on common stand parameters. Eur J For Res 133:73–79. doi:10.1007/s10342-013-0740-z

    Article  Google Scholar 

  • Mitsopoulos I, Mallins G, Arianoutsou M (2013) Assessing fire behaviour simulation accuracy with customized fuel models in Mediterranean ecosystems using real-world historical fire data. In: Proceedings of the 16th Hellenic Forestry Conference. 6–9 October 2013. Thessaloniki, Greece, pp 164–174

  • Moreira F, Vaz P, Catry F, Silva J (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574. doi:10.1071/WF07098

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot F, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape—wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92:2389–2402. doi:10.1016/j.jenvman.2011.06.028

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JF, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  CAS  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis D, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special REPORT ON EMISSION SCENARIOS. Working group III of the intergovernmental panel on climate change (IPCC), Cambridge University Press, Cambridge

  • Pausas J (2004) Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350. doi:10.1023/B:CLIM.0000018508.94901.9c

    Article  Google Scholar 

  • Pausas J, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin?—a review. Int J Wildland Fire 17:713–723. doi:10.1071/WF07151

    Article  Google Scholar 

  • Paz S, Carmel Y, Jahshan F, Shoshany M (2011) Post-fire analysis of pre-fire mapping of fire risk: a recent case study from Mt. Carmel (Israel). For Ecol Manage 262:1184–1188. doi:10.1016/j.foreco.2011.06.011

    Article  Google Scholar 

  • Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard and wildfire occurrence in coastal Eastern Spain. Clim Change 38:345–357. doi:10.1023/A:1005316632105

    Article  Google Scholar 

  • Pyne S, Andrews P, Laven R (1996) Introduction to wildland fire, 2nd edn. Wiley, New York-Chichester

    Google Scholar 

  • Salis M, Ager A, Arca B, Finney M, Bacciu V, Duce P, Spano D (2013) Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int J Wildland Fire 22:549–565. doi:10.1071/WF11060

    Article  CAS  Google Scholar 

  • Salis M, Ager A, Finney M, Arca B, Spano D (2014) Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Nat Hazards 71:1389–1418. doi:10.1007/s11069-013-0951-0

    Article  Google Scholar 

  • Santoni P, Filippi J, Balbi J, Bosseur F (2011) Wildland fire behaviour case studies and fuel models for landscape-scale fire modeling. J Combust 2011, Article ID 613424. doi:10.1155/2011/613424

  • Stocks B, Alexander M, Wotton B, Stefner C, Flannigan M, Taylor S, Lavoie N, Mason J, Hartley G, Maffey M, Dalrymple G, Blake T, Cruz M, Lanoville R (2004) Crown fire behaviour in a northern jack pine–black spruce forest. Can J For Res 34:1548–1560. doi:10.1139/x04-054

    Article  Google Scholar 

  • Syphard A, Keeley J, Brennan T (2011) Factors affecting fuel break effectiveness in controlling large fires on the Los Padres National Forest, California. Int J Wildland Fire 20:764–775. doi:10.1071/WF10065

    Article  Google Scholar 

  • Torn M, Fried J (1992) Predicting the impacts of global warming on wildland fire. Clim Change 21:257–274. doi:10.1007/BF00139726

    Article  Google Scholar 

  • Turco M, Llasat M-C, von Hardenberg J, Provenzale A (2014) Climate change impacts on wildfires in a Mediterranean environment. Clim Change 125:369–380. doi:10.1007/s10584-014-1183-3

    Article  Google Scholar 

  • van Wilgen B, le Maitre D, Kruger F (1985) Fire modeling in South African fynbos (macchia) vegetation and predictions from Rothermel’s fire model. J Appl Ecol 22:207–216. doi:10.2307/2403338

    Article  Google Scholar 

  • Vázquez A, Moreno J (1993) Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landsc Urban Plan 24:129–142. doi:10.1016/0169-2046(93)90091-Q

    Article  Google Scholar 

  • Wotton B, Martell D, Logan K (2003) Climate change and people-caused forest fire occurrence in Ontario. Clim Change 60:275–295. doi:10.1023/A:1026075919710

    Article  CAS  Google Scholar 

  • Xanthopoulos G (2009) Wildland fires: mediterranean. Crisis Response J 5:50–51

    Google Scholar 

  • Yoder J (2004) Playing with fire: endogenous risk in resource management. Am J Agric Econ 4:933–948. doi:10.1111/j.0002-9092.2004.00644.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Community’s Seventh Framework Programme (2010–2013) FUME: Forest fire under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world (Grant Agreement No. 243888). Regional climate model data were provided by the EU FP6 project ENSEMBLES (www.ensembles-eu.org). We thank the Guest Editor Prof. Marco Bindi and the three anonymous reviewers whose insightful comments helped to substantially improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Mitsopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsopoulos, I., Mallinis, G., Karali, A. et al. Mapping fire behaviour under changing climate in a Mediterranean landscape in Greece. Reg Environ Change 16, 1929–1940 (2016). https://doi.org/10.1007/s10113-015-0884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0884-0

Keywords

Navigation