Skip to main content

Advertisement

Log in

Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: a densely populated country in the eastern Mediterranean

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

An Erratum to this article was published on 05 September 2015

Abstract

Land cover and land use changes can result from climatic variability and climate changes, as well as from direct and indirect human drivers, such as growth in population and consumption. In this study, we aimed to examine whether major factors driving landscape changes (expressed in vegetation cover) in Israel, a densely populated country in the eastern Mediterranean Basin, are related to physical drivers or to human causes. To this end, we calculated statistical trends in the Normalized Difference Vegetation Index (NDVI—a spectral index representing vegetation cover) from a 14-year MODIS time series, between 2000 and 2014, to identify areas where vegetation cover has either increased or decreased. We chose 125 study areas where statistically significant changes in NDVI were found and used time series of monthly rainfall, Landsat images, Google Earth images and environmental GIS layers to identify the type and cause of landscape changes. The two most common general classes driving land cover changes were agricultural (56 of 125; expansion of agricultural areas or change in agricultural crops) and urban (28 of 125; urban expansion or urban greening). Other important drivers of landscape changes included forestry, woody encroachment, wildfire dynamics and water management. Climate variability was found to explain landscape changes in only 3 of the 125 study areas, all located in the transition zone between the desert and the Mediterranean climate regions of Israel, where a decrease in rainfall led to a decrease in NDVI values. NDVI as an indicator of landscape changes is not effective to detect changes in non-photosynthetic vegetation or to monitor changes in forests where leaf area index values are high. However, we show here that even in a highly heterogeneous and densely populated country, MODIS-derived time series of NDVI are informative to identify landscape change processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achiron-Frumkin T (2011) Report on the state of nature 2010. The Ma’arag (LTER-Israel), Israel Academy of Sciences, Jerusalem (in Hebrew)

  • Alterman R (2001) National-level planning in Israel: walking the tightrope between government control and privatization. National-Level Planning in Democratic Countries, chapter 11, pp 257–288 (Liverpool University Press)

  • Asner GP (2014) Satellites and psychology for improved forest monitoring. Proc Natl Acad Sci 111:567–568. doi:10.1073/pnas.1322557111

    Article  CAS  Google Scholar 

  • Asner GP, Heidebrecht KB (2002) Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. Int J Remote Sens 23:3939–3958. doi:10.1080/01431160110115960

    Article  Google Scholar 

  • Bennie J, Davies TW, Duffy JP, Inger R, Gaston KJ (2014) Contrasting trends in light pollution across Europe based on satellite observed night time lights. Scientific Rep 4:3789. doi:10.1038/srep03789

    Google Scholar 

  • Bino G, Levin N, Darawshi S, Van Der Hal N, Reich-Solomon A, Kark S (2008) Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int J Remote Sens 29:3675–3700. doi:10.1080/01431160701772534

    Article  Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155. doi:10.1016/j.landurbplan.2010.05.006

    Article  Google Scholar 

  • Bruton MJ, Maron M, Levin N, McAlpine CA (2015) Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes. Landsc Ecol 30:715–728. doi:10.1007/s10980-015-0157-9

    Article  Google Scholar 

  • Calvão T, Palmeirim JM (2011) A comparative evaluation of spectral vegetation indices for the estimation of biophysical characteristics of Mediterranean semi-deciduous shrub communities. Int J Remote Sens 32:2275–2296. doi:10.1080/01431161003698245

    Article  Google Scholar 

  • Carmel Y, Kadmon R (1999) Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecol 145:243–254. doi:10.1023/A:1009872306093

    Article  Google Scholar 

  • Danin A (1988) Flora and vegetation of Israel and adjacent areas. In: Tchernov E (ed) Yom-Tov, Yoram. The Zoogeography of Israel. W. Junk, Dordrecht, pp 129–158

    Google Scholar 

  • de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115:692–702. doi:10.1016/j.rse.2010.10.011

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013) Shifts in global vegetation activity trends. Remote Sens 5:1117–1133. doi:10.3390/rs5031117

    Article  Google Scholar 

  • Diamond J, Bellwood P (2003) Farmers and their languages: the first expansions. Science 300:597–603. doi:10.1126/science.1078208

    Article  CAS  Google Scholar 

  • Dorman M, Svoray T, Perevolotsky A, Sarris D (2013a) Forest performance during two consecutive drought periods: diverging long-term trends and short-term responses along a climatic gradient. For Ecol Manage 310:1–9. doi:10.1016/j.foreco.2013.08.009

    Article  Google Scholar 

  • Dorman M, Svoray T, Perevolotsky A (2013b) Homogenization in forest performance across an environmental gradient—the interplay between rainfall and topographic aspect. For Ecol Manage 310:256–266. doi:10.1016/j.foreco.2013.08.026

    Article  Google Scholar 

  • Eastman J, Sangermano F, Ghimire B, Zhu H, Chen H, Neeti N, … Crema SC (2009) Seasonal trend analysis of image time series. Int J Remote Sens 30:2721–2726. doi:10.1080/01431160902755338

  • Feitelson E (2013) The four eras of Israeli water policies. In: Water policy in Israel. Springer, Netherlands, pp 15–32

  • Feitelson E, Selzer A, Almog R (2014) Water history facets of landscape change in Israel/Palestine 1920–1970: a question of scale and periodization. Water Hist 6:265–288. doi:10.1007/s12685-014-0104-8

    Article  Google Scholar 

  • Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi:10.1016/j.rse.2011.12.015

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, … Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182. doi:10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, … Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

  • Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ (2007) Psychological benefits of greenspace increase with biodiversity. Biol Lett 3:390–394. doi:10.1098/rsbl.2007.0149

    Article  Google Scholar 

  • Gal Y, Hadas E (2013) Land allocation: agriculture vs. urban development in Israel. Land Use Policy 31:498–503. doi:10.1016/j.landusepol.2012.08.013

    Article  Google Scholar 

  • Gitas I, Mitri G, Veraverbeke S, Polychronaki A (2012) Advances in remote sensing of post-fire vegetation recovery monitoring—a review. In: Fatoyinbo (ed) Remote sensing of biomass—principles and applications (InTech). Available at http://www.intechopen.com/books/remote-sensing-of-biomass-principles-and-applications/advances-in-remote-sensing-of-post-fire-monitoring-a-review (Verified 20 June 2013), pp 143–176

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, … Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

  • Helman D, Mussery A, Lensky IM, Leu S (2014) Detecting changes in biomass productivity in a different land management regimes in drylands using satellite-derived vegetation index. Soil Use Manag 30:32–39. doi:10.1111/sum.12099

    Article  Google Scholar 

  • Heumann BW, Seaquist JW, Eklundh L, Jönsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392. doi:10.1016/j.rse.2006.11.025

    Article  Google Scholar 

  • Hinkley DV (1971) Inference about the change-point from cumulative sum tests. Biometrika 58:509–523. doi:10.1093/biomet/58.3.509

    Article  Google Scholar 

  • Hoaglin DC, Mosteller F, Tukey JW (2000) Understanding robust and exploratory data analysis, Wiley Classics Library Edition edn. Wiley, New York

    Google Scholar 

  • Israel Central Bureau of Statistics (2005) Statistical abstract of Israel 2014-No. 65. Central Bureau of Statistics, Jerusalem. Accessed 16 Nov 2014 . Available online at: http://www.cbs.gov.il/reader/shnatonhnew_site.htm

  • Kadmon R, Harari-Kremer R (1999) Studying long-term vegetation dynamics using digital processing of historical aerial photographs. Remote Sens Environ 68:164–176. doi:10.1016/S0034-4257(98)00109-6

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2010) Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21:775–791. doi:10.1177/0959683610386983

    Article  Google Scholar 

  • Karlinsky N (2000) California dreaming: adapting the California Model to the Jewish citrus industry in Palestine, 1917–1939. Israel Stud 5:24–40. doi:10.1353/is.2000.0013

    Google Scholar 

  • Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86. doi:10.1111/j.1466-8238.2010.00587.x

    Article  Google Scholar 

  • Kressel GM, Ben-David J, Abu-Rabia K (1991) Changes in the land usage by the Negev Bedouin since the mid-19th century. Nomadic Peoples 28:28–55

    Google Scholar 

  • La Sorte FA, McKinney ML, Pyšek P (2007) Compositional similarity among urban floras within and across continents: biogeographical consequences of human-mediated biotic interchange. Glob Change Biol 13:913–921. doi:10.1111/j.1365-2486.2007.01329.x

    Article  Google Scholar 

  • Lambin EF, Ehrlich D (1997) Land-cover changes in sub-Saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61:181–200. doi:10.1016/S0034-4257(97)00001-1

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, … Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269. doi:10.1016/S0959-3780(01)00007-3

  • Levin N (2006) The Palestine Exploration Fund map (1871–1877) of the Holy Land as a tool for analyzing landscape changes: the coastal dunes of Israel as a case study. Cartogr J 43:45–67. doi:10.1179/000870406X93508

    Article  Google Scholar 

  • Levin N, Ben-Dor E (2004) Monitoring sand dune stabilization along the coastal dunes of Ashdod-Nizanim, Israel, 1945–1999. J Arid Environ 58:335–355. doi:10.1016/j.jaridenv.2003.08.007

    Article  Google Scholar 

  • Levin N, Duke Y (2012) High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens Environ 119:1–10. doi:10.1016/j.rse.2011.12.005

    Article  Google Scholar 

  • Levin N, Heimowitz A (2012) Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens Environ 126:12–26. doi:10.1016/j.rse.2012.08.003

    Article  Google Scholar 

  • Levin N, Saaroni H (1999) Fire weather in Israel—synoptic climatological analysis. GeoJournal 47:523–538. doi:10.1023/A:1007087217249

    Article  Google Scholar 

  • Levin N, Lahav H, Ramon U, Heller A, Nizry G, Tsoar A, Sagi Y (2007a) Landscape continuity analysis: a new approach to conservation planning in Israel. Landsc Urban Plan 79:53–64. doi:10.1016/j.landurbplan.2006.04.001

    Article  Google Scholar 

  • Levin N, Lugassi R, Ramon U, Braun O, Ben-Dor E (2007b) Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. Int J Remote Sens 28:183–202. doi:10.1080/01431160600658156

    Article  Google Scholar 

  • Levin N, Elron E, Gasith A (2009) Decline of wetland ecosystems in the coastal plain of Israel during the 20th century: implications for wetland conservation and management. Landsc Urban Plan 92:220–232. doi:10.1016/j.landurbplan.2009.05.009

    Article  Google Scholar 

  • Levy N (2012) State of the environment in Judea and Samaria. Municipal Associations for Environmental Quality in Judea and Samaria with Assistance of Green Now (in Hebrew). http://www.greennow.org.il/doc/%D7%93%D7%95%D7%97_%D7%9E%D7%A6%D7%91_%D7%99%D7%94%D7%95%D7%93%D7%94_%D7%95%D7%A9%D7%95%D7%9E%D7%A8%D7%95%D7%9F_%D7%A1%D7%95%D7%A4%D7%99.pdf. Accessed 19 Nov 2014

  • Levy I, Levin N, Schwartz JD, Kark JD (2015) Back-extrapolating a land use regression model for estimating past exposures to traffic-related air pollution. Environ Sci Technol 49:3603–3610. doi:10.1021/es505707e

    Article  CAS  Google Scholar 

  • Li X, Li D (2014) Can night-time light images play a role in evaluating the Syrian crisis? Int J Remote Sens 35:6648–6661. doi:10.1080/01431161.2014.971469

    Article  Google Scholar 

  • Lipchin C (2007) Water, agriculture and Zionism: exploring the interface between policy and ideology. In: integrated water resources management and security in the middle east. Springer, Netherlands, pp 251–267. doi:10.1007/978-1-4020-5986-5_11

  • Los SO (2013) Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: indication for a CO2 fertilization effect in global vegetation. Glob Biogeochem Cycles 27:318–330. doi:10.1002/gbc.20027

    Article  CAS  Google Scholar 

  • Malak DA, Pausas JG (2006) Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin). Int J Wildland Fire 15:407–413. doi:10.1071/WF05052

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • Messerli B, Grosjean M, Hofer T, Nunez L, Pfister C (2000) From nature-dominated to human-dominated environmental changes. Quatern Sci Rev 19:459–479. doi:10.1016/S0277-3791(99)00075-X

    Article  Google Scholar 

  • Meyer WB, Turner BL (1992) Human population growth and global land-use/cover change. Annu Rev Ecol Syst 23:39–61

    Article  Google Scholar 

  • Morin E (2011) To know what we cannot know: global mapping of minimal detectable absolute trends in annual precipitation. Water Resour Res 47:W07505. doi:10.1029/2010WR009798

    Google Scholar 

  • Neeti N, Eastman JR (2011) A contextual Mann–Kendall approach for the assessment of trend significance in image time series. Trans GIS 15:599–611. doi:10.1111/j.1467-9671.2011.01280.x

    Article  Google Scholar 

  • Neigh CS, Tucker CJ, Townshend JR (2008) North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens Environ 112:1749–1772. doi:10.1016/j.rse.2007.08.018

    Article  Google Scholar 

  • Orenstein DE, Hamburg SP (2010) Population and pavement: population growth and land development in Israel. Popul Environ 31:223–254. doi:10.1007/s11111-010-0102-4

    Article  Google Scholar 

  • Paz S, Carmel Y, Jahshan F, Shoshany M (2011) Post-fire analysis of pre-fire mapping of fire-risk: a recent case study from Mt. Carmel (Israel). For Ecol Manage 262:1184–1188. doi:10.1016/j.foreco.2011.06.011

    Article  Google Scholar 

  • Peleg N, Bartov M, Morin E (2014) CMIP5-predicted climate shifts over the East Mediterranean: implications for the transition region between Mediterranean and semi-arid climates. Int J Climatol. doi:10.1002/joc.4114

    Google Scholar 

  • Perevolotsky A, Sheffer E (2009) Forest management in Israel—the ecological alternative. Israel J Plant Sci 57:35–48. doi:10.1560/IJPS.57.1-2.35

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, … Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi:10.1038/nature06937

  • Rozenstein O, Karnieli A (2011) Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl Geogr 31(2):533–544

    Article  Google Scholar 

  • Saltz D, Schmidt H, Rowen M, Karnieli A, Ward D, Schmidt I (1999) Assessing grazing impacts by remote sensing in hyper-arid environments. J Range Manag 52:500–507. doi:10.2307/4003778

    Article  Google Scholar 

  • Samuels R, Harel M, Alpert P (2013) A new methodology for weighting high-resolution model simulations to project future rainfall in the Middle East. Clim Res 57:51–60. doi:10.3354/cr01147

    Article  Google Scholar 

  • Schaffer G, Levin N (2014) Mapping human induced landscape changes in Israel between the end of the 19th century and the beginning of the 21th century. J Landsc Ecol 7:109–139. doi:10.2478/jlecol-2014-0012

    Google Scholar 

  • Schmidt H, Karnieli A (2000) Remote sensing of the seasonal variability of vegetation in a semi-arid environment. J Arid Environ 45:43–59. doi:10.1006/jare.1999.0607

    Article  Google Scholar 

  • Shachar A (1998) Reshaping the map of Israel: a new national planning doctrine. Ann Am Acad Polit Soc Sci 555:209–218

    Article  Google Scholar 

  • Shoshany M (2000) Satellite remote sensing of natural Mediterranean vegetation: a review within an ecological context. Prog Phys Geogr 24:153–178. doi:10.1177/030913330002400201

    Article  Google Scholar 

  • Siegal Z, Tsoar H, Karnieli A (2013) Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: field survey, remote sensing and conceptual modeling. Aeolian Res 9:161–173. doi:10.1016/j.aeolia.2013.02.002

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003. doi:10.1080/01431168908903939

    Article  Google Scholar 

  • Sprintsin M, Karnieli A, Berliner P, Rotenberg E, Yakir D, Cohen S (2007) The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone. Remote Sens Environ 109:416–428. doi:10.1016/j.rse.2007.01.020

    Article  Google Scholar 

  • Tal A (2007) To make a desert bloom: the Israeli agricultural adventure and the quest for sustainability. Agric Hist 81:228–257

    Article  Google Scholar 

  • Tessler N (2012) Documentation and analysis of wildfire regimes on Mount Carmel and the Jerusalem hills. Horiz Geogr 79(80):184–193

    Google Scholar 

  • Tielbörger K, Bilton MC, Metz J, Kigel J, Holzapfel C, Lebrija-Trejos E, Konsens I, Parag HA, Sternberg M (2014) Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat Commun. doi:10.1038/ncomms6102

    Google Scholar 

  • Tsoar H (2008) Land use and its effect on the mobilization and stabilization of the north-western Negev sand dunes. In Arid Dune ecosystems. Springer, Berlin, Heidelberg, pp 79–89. doi:10.1007/978-3-540-75498-5_6

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150. doi:10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • van Leeuwen WJ, Casady GM, Neary DG, Bautista S, Alloza JA, Carmel Y, … Orr BJ (2010) Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel. Int J Wildland Fire 19:75–93. doi:10.1071/WF08078

  • Veraverbeke S, Gitas I, Katagis T, Polychronaki A, Somers B, Goossens R (2012) Assessing post-fire vegetation recovery using red-near infrared vegetation indices: accounting for background and vegetation variability. ISPRS J Photogram Remote Sens 68:28–39. doi:10.1016/j.isprsjprs.2011.12.007

    Article  Google Scholar 

  • Verburg PH, Neumann K, Nol L (2011) Challenges in using land use and land cover data for global change studies. Glob Change Biol 17:974–989. doi:10.1111/j.1365-2486.2010.02307.x

    Article  Google Scholar 

  • Volcani A, Karnieli A, Svoray T (2005) The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. For Ecol Manage 215:239–250. doi:10.1016/j.foreco.2005.05.063

    Article  Google Scholar 

  • Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68:271–297. doi:10.1016/j.jaridenv.2006.05.015

    Article  Google Scholar 

  • Wessels KJ, Van Den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22. doi:10.1016/j.rse.2012.06.022

    Article  Google Scholar 

  • Wittenberg L, Malkinson D, Beeri O, Halutzy A, Tesler N (2007) Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena 71:76–83. doi:10.1016/j.catena.2006.10.007

    Article  Google Scholar 

  • Wright CK, de Beurs KM, Henebry GM (2012) Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Sci 6:177–187. doi:10.1007/s11707-012-0327-x

    Article  Google Scholar 

  • Zeng FW, Collatz GJ, Pinzon JE, Ivanoff A (2013) Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3 g) at global scales. Remote Sens 5:3918–3950. doi:10.3390/rs5083918

    Article  Google Scholar 

  • Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, … Myneni RB (2013) Global data sets of vegetation leaf area index (LAI) 3 g and fraction of photosynthetically active radiation (FPAR) 3 g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981–2011. Remote Sens 5:927–948. doi:10.3390/rs5020927

  • Znobar - Oved Gobi (2009) The founding of new settlements in comparison to the expansion of existing settlements: examining the economic aspects. Prepared for the Israeli Ministry of Environment. http://www.sviva.gov.il/infoservices/reservoirinfo/doclib2/publications/p0701-p0800/p0793.pdf. Accessed 18 Nov 2014 (in Hebrew)

  • Ziv B, Saaroni H, Pargament R, Harpaz T, Alpert P (2013) Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg Environ Change 14:1751–1764. doi:10.1007/s10113-013-0414-x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Noam Halfon and Amit Savir from the Israeli Meteorological Service for providing us with the monthly gridded rainfall data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Levin.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, N. Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: a densely populated country in the eastern Mediterranean. Reg Environ Change 16, 1197–1211 (2016). https://doi.org/10.1007/s10113-015-0848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0848-4

Keywords

Navigation