Skip to main content

Advertisement

Log in

Farm-level assessment of CO2 and N2O emissions in Lower Saxony and comparison of implementation potentials for mitigation measures in Germany and England

  • Case Report
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Greenhouse gases (GHG) emissions from agricultural farming practice contribute significantly to European GHG inventories. For example, CO2 is emitted when grassland is converted to cropland or when peatlands are drained and cultivated. N2O emissions result from fertilization. Enabling farmers to reduce their GHG emissions requires sufficient information about its pressure–impact relations as well as incentives, such as regulations and funding, that support climate-friendly agricultural management. This paper discusses potentials to improve the supply of information on: farm-specific climate services or impacts, present policy incentives in Germany and England that support climate-friendly farm management and related adaptation requirements. Tools which have been developed for a farm environmental management software (to be added after review because of potential identification) are presented. These tools assess CO2 emissions from grassland conversion to cropland and peatland cultivation, as well as N2O emissions from nitrogen fertilization. As input data, the CO2 tool requires a classification of soil types according to soil organic carbon storage. The input data based on soil profile samples was compared with reference data from the literature. The N2O tool relies on farm data concerning fertilization. These tools were tested on three farms in order to determine their viability with respect to the availability of required data and the differentiation of results, which determines how well site-specific conservation measures can be identified. Assessing CO2 retention function of grassland conservation to cropland on the test farms leads to spatially differentiated results (~100 to ~900 potentially mitigated t CO2 ha−1). Assessed N2O emissions varied from 0.41 to 1.1 t CO2eq. ha−1 a−1. The proposed methods support policies that promote a more differentiated funding of climate conservation measures. Conservation measures and areas can be selected so that they will have the greatest mitigation effects. However, even though present policy instruments in Germany and England, such as Cross Compliance and agri-environmental measures, have the potential to reduce agricultural GHG, they do not appear to guide measures effectively or site-specifically. In order to close this gap, agri-environmental measures with the potential to support climate protection should be spatially optimized. Additionally, the wetland restoration measures which are most effective in reducing GHG emissions should be included in funding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams M, Crawford J, Field D, Henakaarchchi N, Jenkins M, McBratney A, Remy Courcelles V de, Singh K, Stockmann U, Wheeler I (2011) Managing the soil-plant system to mitigate atmospheric CO2. Discussion paper for the soil carbon sequestration summit January 31–February 2 2011. http://ussc.edu.au/s/media/docs/other/Science_Review_Paper.pdf. Accessed 11 Jun 2012

  • Ad-hoc-Arbeitsgruppe Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten, Hannover

  • Amani P, Schiefer G (2012) Data availability for carbon calculators in measuring GHG emissions produced by the food sector. Int J Food Syst Dyn 2(4):392–407

    Google Scholar 

  • Arrouays D, Deslais W, Badeau V (2001) The carbon content of topsoil and its geographical distribution in France. Soil Use Manag 17(1):7–11. doi:10.1111/j.1475-2743.2001.tb00002.x

    Article  Google Scholar 

  • Bach M, Freibauer A, Siebner C, Flessa H (2011) The German agricultural soil inventory: sampling design for a representative assessment of soil organic carbon stocks. Spatial statistics 2011: mapping global change. Proc Environ Sci 7:323–328. doi:10.1016/j.proenv.2011.07.056

  • Bastianoni S, Pulselli FM, Tiezzi E (2004) The problem of assigning responsibility for greenhouse gas emissions. Ecol Econ 49:253–257

    Article  Google Scholar 

  • Behm C (2011) Grünlandfläche nimmt in Deutschland weiter ab. Grünland-Erhaltungsverordnungen wirken, aber keine Entwarnung möglich. http://www.cornelia-behm.de/cms/presse/dok/372/372285.gruenlandflaeche_nimmt_in_deutschland_we.html. Accessed 22 April 2011

  • Bormann K (2010) Halbzeitbewertung des ZPLR. Teil II—Kapitel 12. Forstliche Förderung im Schwerpunkt 2; Erstaufforstung landwirtschaftlicher Flächen (ELER-Code 221); Beihilfen für nichtproduktive Investitionen (ELER-Code 227). In: Grajewski R, Forstner B, Bormann K, Horlitz T (eds) Halbzeitbewertung des ZPLR Schleswig-Holstein im Rahmen der 7-Länder-Bewertung. Zukunftsprogramm ländlicher Raum 2007–2013. Plan des Landes Nordrhein-Westfalen zur Entwicklung des ländlichen Raums 2007–2013, Braunschweig

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46(1):53–70. doi:10.1007/BF00210224

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260(1/2):311–329. doi:10.1023/B:PLSO.0000030186.81212.fb

    Article  CAS  Google Scholar 

  • Byrne KA, Kiely G, Leahy P (2007) Carbon sequestration determined using farm scale carbon balance and eddy covariance. Agric Ecosyst Environ 121(4):357–364. doi:10.1016/j.agee.2006.11.015

    Article  Google Scholar 

  • Calanca P, Vuichard N, Campbell C, Viovy N, Cozic A, Fuhrer J, Soussana J (2007) Simulating the fluxes of CO2 and N2O in European grasslands with the pasture simulation model (PaSim). Agric Ecosyst Environ 121:164–174

    Google Scholar 

  • Charlton MB, Bailey A, Arnell N (2010) Water for agriculture. implications for future policy and practice. Reviewing and modelling the impacts of climate change on future food production, Royal Agricultural Society of England. http://www.rase.org.uk. Accessed January 2012

  • Coleman K, Jenkinson D, Crocker G, Grace P, Klír J, Körschens M, Poulton P, Richter D (1997) Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81(1–2):29–44. doi:10.1016/S0016-7061(97)00079-7

    Article  Google Scholar 

  • Conen F, Dobbie KE, Smith KA (2000) Predicting N2O emissions from agricultural land through related soil parameters. Global Chang Biol 6(4):417–426. doi:10.1046/j.1365-2486.2000.00319.x

    Article  Google Scholar 

  • Cv Haaren, Saathoff W, Galler C (2012) Integrating climate protection and mitigation functions with other landscape functions in rural areas: a landscape planning approach. J Environ Plan Manag 55(1):59–76. doi:10.1080/09640568.2011.580558

  • Dechow R, Freibauer A (2011) Assessment of German nitrous oxide emissions using empirical modelling approaches. Nutr Cycl Agroecosyst 91(3):235–254. doi:10.1007/s10705-011-9458-9

    Article  CAS  Google Scholar 

  • Defra (2011) Nitrate vulnerable zones. http://www.defra.gov.uk/food-farm/land-manage/nitrates-watercourses/nitrates/. Accessed January 2012

  • Defra and Natural England (2008) Environmental stewardship. Review of progess. PB 13076, Department for the Environment, Food and Rural Affairs, London

  • Dobbie KE, Smith KA (2003) Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Glob Chang Biol 9(2):204–218. doi:10.1046/j.1365-2486.2003.00563.x

    Article  Google Scholar 

  • Dobbs TL, Pretty JN (2004) Agri-Environmental Stewardship Schemes and “Multifunctionality”. Rev Agric Econ 26(2):220–237. doi:10.1111/j.1467-9353.2004.00172.x

    Article  Google Scholar 

  • Drösler M, Freibauer A, Adelmann W, Augustin J, Bergman L, Beyer C, Chojnicki B, Förster C, Giebels M, Görlitz S, Höper H, Kantelhardt J, Liebersbach H, Hahn-Schöfl M, Minke M, Petschow U, Pfadenhauer J, Schaller L, Schägner P, Sommer M, Thuille A, Wehrhan M (2011) Klimaschutz durch Moorschutz in der Praxis. Ergebnisse aus dem BMBF-Verbundprojekt „Klimaschutz—Moornutzungsstrategien“2006–2010. Arbeitsberichte aus dem vTI-Institut für Agrarrelevante Klimaforschung, 04/2011. vTI, Braunschweig, Berlin, Freising, Jena, Müncheberg, Wien

  • Düngeverordnung (DüV), 27th February 2007 (BGBl. I S. 221), most recent amendment by article 5 para. 36 on 24th February 2012 (BGBl. I S. 212)

  • European Community (EC, 2009) Comission regulation (EC) No 73/2009 of 19 January 2009

  • European Environment Agency (EEA) (2007) The DPSIR framework used by the EEA. http://root-devel.ew.eea.europa.eu/ia2dec/knowledge_base/Frameworks/doc101182. Accessed 05 May 2011

  • Finn JA, Bartolini F, Bourke D, Kurz I, Viaggi D (2009) Ex post environmental evaluation of agri-environment schemes using experts’ judgements and multicriteria analysis. J Environ Plan Manag 52(5):717–737. doi:10.1080/09640560902958438

    Article  Google Scholar 

  • Flechard C, Ambus P, Skiba U, Rees R, Hensen A, van Amstel A, van den Pol-van Dasselaar A, Soussana J, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves K, Levy P, Ball B, Jones S, van Bulk W de, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric. Ecosyst Environ 121(1–2):135–152

    Google Scholar 

  • Freibauer A et al (2003) Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe. Biogeochem 63:93–115

    Article  CAS  Google Scholar 

  • Garten CT Jr, Ashwood TL (2002) Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration. Glob Biogeochem Cycles 16(4):1114. doi:10.1029/2002GB001918

    Article  Google Scholar 

  • Garten CT, Wullschleger SD (1999) Soil carbon inventories under a bioenergy crop (Switchgrass): measurement limitations. J Environ Qual 28(4):1359. doi:10.2134/jeq1999.00472425002800040041x

    Article  CAS  Google Scholar 

  • German Advisory Council on the Environment (2008) Environmental report 2008. Environmental protection in the shadow of climate change

  • Giltrap DL, Li C, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136(3–4):292–300. doi:10.1016/j.agee.2009.06.014

    Article  CAS  Google Scholar 

  • Glatzel S, Stahr K (2001) Methane and nitrous oxide exchange in differently fertilised grassland in southern Germany. Plant Soil 231:21–35

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8(4):345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Haaren CV, Hülsbergen K, Hachmann R (2008) Naturschutz im landwirtschaftlichen Betriebsmanagement. EDV-Systeme zur Unterstützung der Erfassung, Bewertung und Konzeption von Naturschutzleistungen landwirtschaftlicher Betriebe. Ibidem-Verl., Stuttgart

  • Hellebrand HJ, Scholz V, Kern J, Kavdir Y (2005) N2O release during cultivation of energy crops. Agrartech Forsch 11(5):E114–E124

    Google Scholar 

  • Holmes Ling P, Metcalve P (2008) Natural England Carbon Baseline Survey Project. Contract no. FST20-63-025. http://s3.amazonaws.com/zanran_storage/www.naturalengland.org.uk/ContentPages/18412107.pdf. Accessed 14 Jun 2012

  • Höper H (2007) Freisetzung von Treibhausgasen aus deutschen Mooren. Emission of greenhouse gases from German peatlands. TELMA 37:85–116

    Google Scholar 

  • Höper H (2008) Treibhausgasfreisetzung organischer Böden. In: Umweltbundesamt (ed.) UBA-Workshop “Böden im Klimawandel - Was tun?!”. am 22./23. Januar 2008. UBA (Texte, 25/08), Dessau, pp 105–109

  • Höper H (2009a) C-Vorräte. Vergleich A-G nach Bodenklasse. Unpublished

  • Höper H (2009b) (2009b) Die Rolle von organischen Böden als Kohlenstoffspeicher. NNA-Berichte 1:91–97

    Google Scholar 

  • Isermann K (1994) Agriculture’s share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environ Pollut 83(1–2):95–111. doi:10.1016/0269-7491(94)90027-2

    Article  CAS  Google Scholar 

  • Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M (2005) The carbon budget of terrestrial ecosystems at country-scale: a European case study. Biogeoscience 2(1):15–26

    Article  CAS  Google Scholar 

  • Johann Heinrich von Thünen-Institut (vTI) 7-Länder-Bewertung, Bewertung von ländlichen Entwicklungsprogrammen der Bundesländer Hessen, Nordrhein-Westfalen, Niedersachsen/Bremen, Schleswig-Holstein, Hamburg und Mecklenburg-Vorpommern 2007–2013. Einzeldarstellung des Projektes. http://www.vti.bund.de/de/startseite/institute/lr/projekte/laufende-projekte/7-laender-bewertung.html. Accessed 27 Jun 2012

  • Jones MB (2010) Potential for carbon sequestration in temperate grassland soils. In: Abberton M (ed) Grassland carbon sequestration. Management, policy and economics : Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change, Rome, April 2009. Food and Agriculture Organization of the United Nations, Rome, pp 1–18

  • Jungkunst HF, Freibauer A, Neufeldt H, Bareth G (2006) Nitrous oxide emissions from agricultural land use in Germany: a synthesis of available annual field data. J Plant Nutr Soil Sci 169(3):341–351. doi:10.1002/jpln.200521954

    Article  CAS  Google Scholar 

  • Landwirtschaftskammer Niedersachsen (2010) Empfehlungen zur Stickstoffdüngung nach der N min –Methode. http://www.lwk-niedersachsen.de/download.cfm/file/341,7d961066-237d-eebf-5e8530e4811b95d9~pdf.html. Accessed 9 January 2012

  • CleanMetrics Corp. LCI Methodology and Data Sources. http://www.cleanmetrics.com/html/lci_methodology.htm. Accessed 14 Jun 2012

  • Leip A, Marchi G, Koeble R, Kempen M, Britz W, Li C (2008) Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeoscience 5(1):73–94. doi:10.5194/bg-5-73-2008

    Article  Google Scholar 

  • Leip A, Busto M, Winiwarter W (2011) Developing spatially stratified N2O emission factors for Europe. Environ Poll 159(11):3223–3232. doi:10.1016/j.envpol.2010.11.024

    Article  CAS  Google Scholar 

  • Lesschen JP, Velthof GL, de Vries W, Kros J (2011) Differentiation of nitrous oxide emission factors for agricultural soils. Environ Poll 159(11):3215–3222. doi:10.1016/j.envpol.2011.04.001

    Article  CAS  Google Scholar 

  • Lettens S, van Orshoven J, van Wesemael B, Muys B (2004) Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use Manag 20(1):40–47. doi:10.1111/j.1475-2743.2004.tb00335.x

    Article  Google Scholar 

  • Lettens S, van Orshoven JO, van Wesemael BA, Muys B, Perrin D (2005) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol 11(12):2128–2140. doi:10.1111/j.1365-2486.2005.001074.x

    Article  Google Scholar 

  • Levy P, Mobbs D, Jones S, Milne R, Campbell C, Sutton M (2007) Simulation of fluxes of greenhouse gases from European grasslands using the DNDC model. Agric Ecosyst Environ 121:186–192

    Google Scholar 

  • Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58(1):259–276. doi:10.1023/A:1009859006242

    Article  CAS  Google Scholar 

  • Liebens J, VanMolle M (2003) Influence of estimation procedure on soil organic carbon stock assessment in Flanders, Belgium. Soil Use Manag 19(4):364–371. doi:10.1111/j.1475-2743.2003.tb00327.x

    Article  Google Scholar 

  • Lobley M, Potter C (1998) Environmental Stewardship in UK agriculture: a comparison of the environmentally sensitive area programme and the Countryside Stewardship Scheme in South East England. Geoforum 29(4):413–432. doi:10.1016/S0016-7185(98)00019-0

    Article  Google Scholar 

  • Mander Ü, Uuemaa E, Kull A, Kanal A, Maddison M, Soosaar K, Salm J-O, Lesta M, Hansen R, Kuller R, Harding A, Augustin J (2010) Assessment of methane and nitrous oxide fluxes in rural landscapes. Landscape Urban Plan 98:172–181

    Article  Google Scholar 

  • Meersmans J, de Ridder F, Canters F, de Baets S, van Molle M (2008) A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 143(1–2):1–13. doi:10.1016/j.geoderma.2007.08.025

    Article  CAS  Google Scholar 

  • Natural England (2010a) Entry level stewardship. Environmental stewardship handbook Third Edition—February 2010. http://www.naturalengland.org.uk. Accessed January 2012

  • Natural England (2010b) Higher level stewardship. Environmental stewardship handbook Third Edition—February 2010. http://www.naturalengland.org.uk. Accessed January 2012

  • Naujoks K (2009) Agrarumweltmaßnahmen auch für Ackerflächen. Natur in NRW 34(3):17–19

    Google Scholar 

  • Neufeldt H (2005) Carbon stocks and sequestration potentials of agricultural soils in the federal state of Baden-Württemberg, SW Germany. J Plant Nutr Soil Sci 168(2):202–211

    Article  CAS  Google Scholar 

  • Neufeldt, H. (2006) Kohlenstoffinventar der Böden Niedersachsens. Report to the Niedersächsisches Landesamt für Bodenforschung (LBEG). l–17, annex. Unpublished

  • Newell Price JP, Harris D, Taylor M, Williams JR, Anthony SG, Duethmann D, Gooday RD, Lord EI, Chambers BJ, Chadwick DR, Misselbrook TH (2011) An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture. Report prepared as part of Defra Project WQ0106, ADAS and Rothamsted Research North Wyke

  • NFU (2011) GHG emissions. agriculture’s action plan. http://www.nfuonline.com/ghgap/. Accessed June 2012

  • Niedersächsisches Landesamt für Bodenforschung (2004) Digitale Hofbodenkarte. Arbeitshefte Boden 2004 (5). Schweizerbart, Stuttgart

  • Niedersächsisches Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung (2012) B0. Klimaschonende Grünlandbewirtschaftung der gesamten Dauergrünlandflächen eines Betriebes. http://www.ml.niedersachsen.de/portal/live.php?navigation_id=1544&article_id=5306&_psmand=7. Accessed 27 Jun 2012

  • Nol L, Verburg PH, Heuvelink GBM, Molenaar K (2008) Effect of land cover data on nitrous oxide inventory in fen meadows. J Environ Qual 37(3):1209–1219. doi:10.2134/jeq2007.0438

    Article  CAS  Google Scholar 

  • Oenema O, Gebauer G, Rodriguez M, Sapek A, Jarvis S, Corré W, Yamulki S (1998) Controlling nitrous oxide emissions from grassland livestock production systems. Nutr Cycl Agroecosys 52(2/3):141–149. doi:10.1023/A:1009732226587

    Article  CAS  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JI (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7(4):785–809. doi:10.1029/93GB02042

    Article  CAS  Google Scholar 

  • Phillips R, Beeri O (2008) The role of hydropedologic vegetation zones in greenhouse gas emissions for agricultural wetland landscapes. Catena 72:386–394

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone: carbon response functions as a model approach. Glob Chang Biol 17(7):2415–2427. doi:10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  • Potter C, Cook H, Norman C (1993) The targeting of rural environmental policies: an assessment of agri-environmental schemes in the UK. J. Environ. Plan. Manag. 36(2):199–216. doi:10.1080/09640569308711939

    Article  Google Scholar 

  • Rogner H-H, Zhou D, Bradley R, Crabbé P, Edenhofer O, Hare B, Kuijpers L, Yamaguchi M (2007) Introduction. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (1st edn), Cambridge University Press, Cambridge, Mass, pp 96–116

  • Schleupner C, Schneider UA (2010) Effects of bioenergy policies and targets on European wetland restoration options. Environ Sci Policy 13(8):721–732. doi:10.1016/j.envsci.2010.07.005

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63(5):1350–1358

    Article  CAS  Google Scholar 

  • Skiba U, Sheppard L, MacDonald J, Fowler D (1998) Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmos Environ 32(19):3311–3320

    Article  CAS  Google Scholar 

  • Smith P, Andrén O, Brussaard L, Dangerfield M, Ekschmitt K, Lavelle P, Tate K (1998) Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Glob Chang Biol 4(7):773–784. doi:10.1046/j.1365-2486.1998.00193.x

    Article  Google Scholar 

  • Sozanska M, Skiba U, Metcalfe S (2002) Developing an inventory of N2O emissions from British soils. Atmos Environ 36:987–998

    Article  CAS  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74(3):207–228. doi:10.1007/s10705-006-9000-7

    Article  CAS  Google Scholar 

  • Tietz A (ed) (2007) Ländliche Entwicklungsprogramme 2007 bis 2013 in Deutschland im Vergleich. Finanzen, Schwerpunkte, Maßnahmen. Bundesforschungsanstalt für Landwirtschaft. Braunschweig: FAL (Landbauforschung VölkenrodeSonderheft, 315). http://www.vti.bund.de/fallitdok_extern/zi043770.pdf/http://www.gbv.de/dms/hebis-darmstadt/toc/194370453.pdf. Accessed January 2012

  • Tietz A (2010) Auswirkungen von Health Check und EU-Konjunkturprogramm auf die ländlichen Entwicklungsprogramme der deutschen Bundesländer. Braunschweig (Arbeitsberichte aus der VTI-Agrarökonomie). http://nbn-resolving.de/urn:nbn:de:gbv:253-201005-zi044148-4. Accessed January 2012

  • Umweltbundesamt (2011) Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2011. Nationaler Inventarbericht zum deutschen Treibhausgasinventar 1990–2009. Climate change, vol 11. Umweltbundesamt, Dessau

  • van der Horst D (2007) Assessing the efficiency gains of improved spatial targeting of policy interventions; the example of an agri-environmental scheme. J Environ Manag 85(4):1076–1087. doi:10.1016/j.jenvman.2006.11.034

    Article  Google Scholar 

  • Viaud V, Angers DA, Walter C (2010) Toward landscape-scale modeling of soil organic matter dynamics in agroecosystems. Soil Sci Soc Am J 74(6):1847–1860

    Article  CAS  Google Scholar 

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Chang Biol 8(6):519–530. doi:10.1046/j.1365-2486.2002.00485.x

    Article  Google Scholar 

  • von Ruschkowski E, Cv Haaren (2008) Agrarumweltmaßnahmen in Deutschland im europäischen Vergleich : eine Bewertung und Optimierungsansätze für den Natur- und Klimaschutz. Naturschutz und Landschaftsplanung : Zeitschrift für angewandte Ökologie 40(10):329–335

    Google Scholar 

  • Yanai RD, Stehman SV, Arthur MA, Prescott CE, Friedland AJ, Siccama TG, Binkley D (2003) Detecting change in forest floor carbon. Soil Sci Soc Am J 67(5):1583. doi:10.2136/sssaj2003.1583

    Article  CAS  Google Scholar 

  • Zaehle S, Bondeau A, Carter TR, Cramer W, Erhard M, Prentice IC, Reginster I, Rounsevell MDA, Sitch S, Smith B, Smith PC, Sykes M (2007) Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystem 10(3):380–401. doi:10.1007/s10021-007-9028-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the farmers of the three test farms mentioned in this study for their participation. The Ministry for Science and Culture of Lower Saxony owes particularly gratitude for the funding of our research in the cause of the project “Sustainable use of bioenergy: bridging climate protection, nature conservation and society”. We also thank Heinrich Höper from the Lower Saxony Office for Mining, Energy and Geology (Landesamt für Bergbau, Energie und Geologie, LBEG) for the supply of the soil type–specific data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke Saathoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saathoff, W., von Haaren, C., Dechow, R. et al. Farm-level assessment of CO2 and N2O emissions in Lower Saxony and comparison of implementation potentials for mitigation measures in Germany and England. Reg Environ Change 13, 825–841 (2013). https://doi.org/10.1007/s10113-012-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0364-8

Keywords

Navigation