Skip to main content
Log in

How to convexify the intersection of a second order cone and a nonconvex quadratic

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, \(\mathcal {E}\), and a split disjunction, \((l - x_j)(x_j - u) \le 0\) with \(l < u\), equals the intersection of \(\mathcal {E}\) with an additional second-order-cone representable (SOCr) set. In this paper, we study more general intersections of the form \(\mathcal {K}\cap \mathcal {Q}\) and \(\mathcal {K}\cap \mathcal {Q}\cap H\), where \(\mathcal {K}\) is a SOCr cone, \(\mathcal {Q}\) is a nonconvex cone defined by a single homogeneous quadratic, and H is an affine hyperplane. Under several easy-to-verify conditions, we derive simple, computable convex relaxations \(\mathcal {K}\cap \mathcal {S}\) and \(\mathcal {K}\cap \mathcal {S}\cap H\), where \(\mathcal {S}\) is a SOCr cone. Under further conditions, we prove that these two sets capture precisely the corresponding conic/convex hulls. Our approach unifies and extends previous results, and we illustrate its applicability and generality with many examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A global optimization method, \(\alpha \)-BB, for general twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  2. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integerconic quadratic sets. In: Proceedings of IPCO 2013, volume7801 of Lecture Notes in Computer Science, pp. 37–48.Valparaiso, Chile (March 2013)

  3. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha {{\rm BB}}\): a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995). State of the art in global optimization: computational methods and applications (Princeton, NJ, 1995)

  4. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124(1–2), 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program. 122(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balas, E.: Disjunctive programming. Ann. Discret. Math. 5, 3–51 (1979)

    Article  MATH  Google Scholar 

  8. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barvinok, A.: A Course in Convexity, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  11. Belotti, P.: Disjunctive cuts for nonconvex MINLP. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 117–144. Springer, New York, NY (2012)

  12. Belotti, P., Góez, J., Pólik, I., Ralphs, T., Terlaky, T.: On families of quadratic surfaces having fixed intersections with two hyperplanes. Discret. Appl. Math. 161(16), 2778–2793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Belotti, P., Goez, J.C., Polik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numerical Analysis and Optimization, volume 134 of Springer Proceedings in Mathematics and Statistics, pp. 1–35. Springer (2014)

  14. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets. SIAM J. Optim. 24(2), 643–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Gunluk, O., Woeginger, G.J. (eds.) Proceedings of the 15th IPCO Conference, volume 6655 of Lecture Notes in Computer Science, pp. 52–64. Springer, New York, NY (2011)

  16. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burer, S., Saxena, A.: The MILP road to MIQCP. In: Mixed Integer Nonlinear Programming, pp. 373–405. Springer (2012)

  18. Cadoux, F.: Computing deep facet-defining disjunctive cuts for mixed-integer programming. Math. Program. 122(2), 197–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Çezik, M., Iyengar, G.: Cuts for mixed 0–1 conic programming. Math. Program. 104(1), 179–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86(3), 595–614 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-RegionMethods. MPS/SIAM Series on Optimization. SIAM, Philadelphia, PA (2000)

  22. Cornuéjols, G., Lemaréchal, C.: A convex-analysis perspective on disjunctive cuts. Math. Program. 106(3), 567–586 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex body. Oper. Res. Lett. 39, 121–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Drewes, S.: Mixed Integer Second Order Cone Programming. Ph.D. thesis, Technische Universität Darmstadt (2009)

  25. Drewes, S., Pokutta, S.: Cutting-planes for weakly-coupled 0/1 second order cone programs. Electron. Notes in Discrete Math. 36, 735–742 (2010)

    Article  MATH  Google Scholar 

  26. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124(1–2), 183–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  29. Hu, J., Mitchell, J.E., Pang, J.-S., Bennett, K.P., Kunapuli, G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim. 19(1), 445–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147(1), 171–206 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Júdice, J.J., Sherali, H., Ribeiro, I.M., Faustino, A.M.: A complementarity-based partitioning and disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. J. Glob. Optim. 136, 89–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators, second edn. Springer, Berlin-New York (1976). Grundlehren der Mathematischen Wissenschaften, Band 132

  33. Kılınç, M., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for convex mixed integer nonlinear programs. Technical report. http://www.optimization-online.org/DB_FILE/2010/11/2808.pdf (2010)

  34. Kılınç-Karzan, F.: On minimal inequalities for mixed integer conic programs. Math. Oper. Res. 41(2), 477–510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. In: Lee, J., Vygen, J. (eds.) IPCO, volume 8494 of Lecture Notes in Computer Science, pp. 345–356. Springer (2014)

  36. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1), 463–491 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15(3–4), 201–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mahajan, A., Munson, T.: Exploiting second-order cone structure for global optimization. Technical report. ANL/MCS-P1801-1010, Argonne National Laboratory, http://www.optimization-online.org/DB_HTML/2010/10/2780.html (October 2010)

  39. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

    Article  MathSciNet  Google Scholar 

  40. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155(1), 575–611 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Modaresi, S., Vielma, J.: Convex hull of two quadratic or a conic quadratic and a quadratic inequality. Technical report. http://www.optimization-online.org/DB_HTML/2014/11/4641.html (November 2014)

  42. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguyen, T.T., Tawarmalani, M., Richard, J.-P.P.: Convexification techniques for linear complementarity constraints. In: Günlük, O., Woeginger, G.J. (eds.) IPCO, volume 6655 of Lecture Notes in Computer Science, pp. 336–348. Springer (2011)

  44. Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23(2), 339–358 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rellich, F.: Perturbation theory of eigenvalue problems. Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz. Gordon and Breach Science Publishers, New York-London-Paris (1969)

  47. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program. 77(2), 273–299 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained programs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO, volume 5035 of Lecture Notes in Computer Science, pp. 17–33. Springer (2008)

  49. Sherali, H., Shetty, C.: Optimization with disjunctive constraints. Lectures on Econ. Math. Systems, 181 (1980)

  50. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86(3), 515–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tawarmalani, M., Richard, J., Chung, K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124(1–2), 481–512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tawarmalani, M., Richard, J.-P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138(1–2), 531–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yıldıran, U.: Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control Inf. 26, 417–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yıldız, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order cone. Oper. Res. Lett. 43(4), 432–437 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Associate Editor and anonymous referees for their constructive feedback which improved the presentation of the material in this paper. The research of the second author is supported in part by NSF Grant CMMI 1454548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Kılınç-Karzan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 903 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burer, S., Kılınç-Karzan, F. How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162, 393–429 (2017). https://doi.org/10.1007/s10107-016-1045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1045-z

Keywords

Mathematics Subject Classification

Navigation