Skip to main content
Log in

A bundle-free implicit programming approach for a class of elliptic MPECs in function space

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Using a standard first-order optimality condition for nonsmooth optimization problems, a general framework for a descent method is developed. This setting is applied to a class of mathematical programs with equilibrium constraints in function space from which a new algorithm is derived. Global convergence of the algorithm is demonstrated in function space and the results are then illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.-F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  2. Aronszajn, N.: Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57(2), 147–190 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MPS-SIAM Series on Optimization. SIAM and MPS, Philadelphia (2006)

    Book  MATH  Google Scholar 

  4. Barbu, V.: Optimal Control of Variational Inequalities, Volume 100 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1984)

    Google Scholar 

  5. Bergounioux, M.: Optimal control of an obstacle problem. Appl. Math. Optim. 36(2), 147–172 (1997)

    Article  MathSciNet  Google Scholar 

  6. Bergounioux, M.: Optimal control of problems governed by abstract elliptic variational inequalities with state constraints. SIAM J. Control Optim. 36(1), 273–289 (1998). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans, J.-F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Brezis, H.R., Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. Fr. 96, 153–180 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Choquet, G.: Theory of capacities. Ann. Inst. Fourier Grenoble 5(1953–1954), 131–295 (1955)

    MathSciNet  MATH  Google Scholar 

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1983)

    Google Scholar 

  11. De Los Reyes, J.C.: Optimal control of a class of variational inequalities of the second kind. SIAM J. Control Optim. 49(4), 1629–1658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17(1), 259–286 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukushima, M., Pang, J.-S.: Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: Ill-posed variational problems and regularization techniques (Trier, 1998). vol. 477 of Lecture Notes in Econom. and Math. Systems. Springer, Berlin, pp. 99–110

  14. Glowinski, R., Lions, J.-L., Trémolières, R.: Analyse numérique des inéquations variationnelles. Tome 1. Dunod, Paris, 1976. Théorie générale premiéres applications, Méthodes Mathématiques de l’Informatique, 5

  15. Goldberg, H., Kampowsky, W., Tröltzsch, F.: On Nemytskij operators in \(L_p\)-spaces of abstract functions. Math. Nachr. 155, 127–140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Großmann, C., Roos, H.-G.: Numerik partieller Differentialgleichungen. second ed. Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks]. B. G. Teubner, Stuttgart, (1994)

  17. Hackbusch, W.: Multigrid Methods and Applications, Volume 4 of Springer Series in Computational Mathematics. Springer, Berlin (1985)

    Google Scholar 

  18. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Henrot, A., Pierre, M.: Variation et optimisation de formes, vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005)

    Google Scholar 

  20. Herzog, R., Meyer, C., Wachsmuth, G.: C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim. 50(5), 3052–3082 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hintermüller, M., Ito, K., Kunisch, K.: The primal–dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: \(C\)- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50(1), 111–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hintermüller, M., Mordukhovich, B., Surowiec, T.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146(1), 555–582 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Hintermüller, M., Surowiec, T.: First order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ito, K., Kunisch, K.: Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41(3), 343–364 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  29. Kunisch, K., Wachsmuth, D.: Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM Control Optim. Calc. Var. 18(4), 520–547 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, J.-L.: Various topics in the theory of optimal control of distributed systems. In: Optimal control theory and its applications (Proc. Fourteenth Biennial Sem. Canad. Math. Congr., Univ. Western Ontario, London, Ont., 1973), Part I. Springer, Berlin, 1974, pp. 116–309. Lecture Notes in Econom. and Math. Systems, Vol. 105

  31. Lions, J.-L.: Contrôle des systèmes distribués singuliers, vol. 13 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge (1983)

    Google Scholar 

  32. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  33. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co. Inc., River Edge (1992)

    Book  MATH  Google Scholar 

  34. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Vol. 28 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  37. Outrata, J.V., Jařusek, J., Stará, J.: On optimality conditions in control of elliptic variational inequalities. Set-Valued Var. Anal. 19, 23–42 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Preiss, D., Zajíček, L.: Sigma-porous sets in products of metric spaces and sigma-directionally porous sets in Banach spaces. Real Anal. Exchange 24(1), 295–313 (1998/99)

  39. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics. No. 134 in North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1984)

    Google Scholar 

  40. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schiela, A., Wachsmuth, D.: Convergence analysis of smoothing methods for optimal control of stationary variational inequalities. DFG Research Center MATHEON Preprint. http://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1035, January 2012

  42. Schiela, A., Wachsmuth, D.: Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM Math. Model. Numer. Anal. 47(3), 771–787 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shapiro, A.: On concepts of directional differentiability. JOTA 66(3), 477–487 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tröltzsch, F.: Optimal control of partial differential equations, vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels

  46. Červinka, M.: Hierarchical Structures in Equilibrium Problems. PhD thesis, Charles University in Prague (2008)

  47. Wloka, J.: Partielle Differentialgleichungen. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1982)

    Book  MATH  Google Scholar 

  48. Yvon, J.-P.: Etude de quelques problèmes de contrôle pour des systèmes distribués. PhD thesis, 1973 Paris VI

  49. Yvon, J.P.: Optimal control of systems governed by variational inequalities. In: Fifth Conference on Optimization Techniques (Rome, 1973), Part I. Lecture Notes in Comput. Sci., Vol. 3. Springer, Berlin, pp. 265–275 (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Surowiec.

Additional information

This research has been supported by the Research Center Matheon through Projects C-OT1 and C-SE5 through the Einstein Center for Mathematics Berlin, DFG SFB Transregio 154 Subproject B02, FWF SFB F32-N18 Subproject “Freelevel” as well as the DFG Projects HI 1466/5-1 and HI 1466/2-1.

Appendix

Appendix

The capacity of a subset \(A \subset \Omega \) can be defined as follows, see e.g. [19] Proposition 3.3.12:

Definition 5.1

$$\begin{aligned} \text {cap}(A) = \inf \left\{ \int _{\Omega } |\nabla v|^2 dx,\, \text {over } v \in H^1_0(\Omega ) \,|\, v \ge 1,\,\,\text { a.e. on an open neighborhood of } A\right\} . \end{aligned}$$

Unlike the Lebesgue measure, \((n-1)\)-dimensional manifolds may have positive capacity. The subadditive function cap\((\cdot )\) is used to define the notion of quasi-continuity: A function \(f:\Omega \rightarrow \mathbb R\) is said to be quasi-continuous provided there exists a nonincreasing sequence of open sets \(\Omega _n \subset \Omega \) with cap\((\Omega _n) \rightarrow 0\) such that f is continuous on \(\Omega \setminus \Omega _n\) (cf. Chapter 3.3 in [19], Chapter 6.4.3 in [7], or [9]). It is well-known that every \(H^1_0(\Omega )\)-function f has a unique quasi-continuous representative \(\tilde{f}\). Finally, we say that a property holds “quasi-everywhere”, denoted here by q.e., provided it holds up to a set of capacity zero. This leads to the following result.

Lemma 5.2

Let \(\Omega \subset \mathbb R^n\) be open and bounded with \(n \ge 1\). Let \(\mathcal {A} \subset \Omega \) be compact and assume (18a) holds for \(\mathcal {A}\). If \(d \in H^1_0(\Omega )\) with \(d \ge 0,\,\,a.e.\,{\mathcal {A}}\), then \(\tilde{d} \ge 0,\,\,q.e.\,\text {int}({\mathcal {A}})\).

Remark 5.3

In other words, in such a situation, there is no difference between almost everywhere and quasi-everywhere on open sets.

Proof

Define \(\mathcal {B} \subset \Omega \) by \( \mathcal {B} := \left\{ x \in \Omega | \tilde{d}(x) < 0\right\} , \) and note that \(\mathcal {B} \cap \mathcal {A}\) has Lebesgue measure zero. By definition of quasi-continuity, there exists a non-increasing sequence of open sets \(\Omega _n \subset \Omega \) such that \(\tilde{d}|_{\Omega \setminus \Omega _n}\) is continuous and \(\text {cap}(\Omega _n) \rightarrow 0\) as \(n \rightarrow +\infty \). It follows then that \(\mathcal {B} \setminus \Omega _n\) is open in \(\Omega \setminus \Omega _n\) and, consequently, \(\mathcal {B} \cup \Omega _n\) is open in \(\Omega \). By (18a), \(\mathcal {B} \cap \text {int}(\mathcal {A}) \cup \Omega _n\) is open as well. Following the proof of Lemme 3.3.30 in [19] or Lemma 6.49 in [7] we deduce \( \tilde{d} \ge 0, \,\,q.e.\,\text {int}({\mathcal {A}}). \) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintermüller, M., Surowiec, T. A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math. Program. 160, 271–305 (2016). https://doi.org/10.1007/s10107-016-0983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-0983-9

Keywords

Mathematical Subject Classification

Navigation