Skip to main content

Advertisement

Log in

Biostimulation with diode laser positively regulates cementoblast functions, in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effects of diode laser biostimulation on cementoblasts (OCCM.30). A total of 40 root plates were obtained from healthy third molar teeth and assigned to the following two groups: (1) control group and (2) laser-treated group. Root plates were placed into the cell culture inserts, and OCCM.30 cells were seeded onto root plates. Cells were irradiated with a low level of diode laser (power: 0.3 W in continuous wave, 60 s/cm2). Proliferation and mineralized tissue-associated gene’s and BMP’s messenger RNA (mRNA) expressions of cementoblasts were evaluated. Total RNAs were isolated on day 3 and integrin-binding sialoprotein (Ibsp), bone gamma-carboxyglutamate protein (Bglap), Type I collagen (Col1a1), osteoblastic transcription factor, runt-related transcription factor (Runx2), and Bone Morphogenetic Protein (BMP)-2, 3, 4, 6, and 7 mRNA expressions were determined using quantitative RT-PCR. von Kossa staining was performed to evaluate biomineralization of OCCM.30 cells. In the proliferation experiment, while there was no significant difference until 96 h, laser irradiation retarded the decrease in cell proliferation trend after 96 h compared to the untreated control group. Statistically significant increase in Ibsp, Bglap, and BMP-2,3,6,7 mRNA expressions were noted in the laser groups when compared to the untreated control group (p < 0.05). Laser irradiation induced mineralized nodule formation of cementoblasts. The results of this study reveal that the biostimulation setting of diode laser modulates the behavior of cementoblasts inducing mineralized tissue-associated gene’s mRNA expressions and mineralization. Therefore, biostimulation can be used during regenerative periodontal therapies to trigger cells with periodontal attachment apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mizutani K, Aoki A, Coluzzi D et al (2016) Lasers in minimally invasive periodontal and peri-implant therapy. Periodontol 71(1):185–212

    Article  Google Scholar 

  2. Saygun I, Karacay S, Serdar M et al (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23(2):211–215

    Article  PubMed  Google Scholar 

  3. Hakki SS, Bozkurt SB (2012) Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Lasers Med Sci 27(2):325–331

    Article  PubMed  Google Scholar 

  4. Basso FG, Soares DG, de Souza Costa CA et al (2016) Low-level laser therapy in 3D cell culture model using gingival fibroblasts. Lasers Med Sci 31(5):973–978

    Article  PubMed  Google Scholar 

  5. Karu T (2010) Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg 28(2):159–160

    Article  CAS  PubMed  Google Scholar 

  6. Lui J, Corbet EF, Jin L (2011) Combined photodynamic and low-level laser therapies as an adjunct to nonsurgical treatment of chronic periodontitis. J Periodontal Res 46:89–96

    Article  CAS  PubMed  Google Scholar 

  7. Saygin NE, Giannobile WV, Somerman MJ (2000) Molecular and cell biology of cementum. Periodontol 24:73–98

    Article  CAS  Google Scholar 

  8. Aoki A, Mizutani K, Schwarz F et al (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontol 68(1):217–269

    Article  Google Scholar 

  9. Low SB, Mott A (2014) Laser technology to manage periodontal disease: a valid concept? J Evid Based Dent Pract 14(Suppl):154–159

    Article  PubMed  Google Scholar 

  10. Aykol G, Baser U, Maden I et al (2011) The effect of low-level laser therapy as an adjunct to non-surgical periodontal treatment. J Periodontol 82(3):481–488

    Article  PubMed  Google Scholar 

  11. Saglam M, Kantarci A, Dundar N et al (2014) Clinical and biochemical effects of diode laser as an adjunct to nonsurgical treatment of chronic periodontitis: a randomized, controlled clinical trial. Lasers Med Sci 29(1):37–46

    Article  PubMed  Google Scholar 

  12. Koçak E, Sağlam M, Kayış SA et al (2016) Nonsurgical periodontal therapy with/without diode laser modulates metabolic control of type 2 diabetics with periodontitis: a randomized clinical trial. Lasers Med Sci 31(2):343–353

    Article  PubMed  Google Scholar 

  13. Ozturan S, Durukan SA, Ozcelik O et al (2011) Coronally advanced flap adjunct with low intensity laser therapy: a randomized controlled clinical pilot study. J Clin Periodontol 38(11):1055–1062

    Article  PubMed  Google Scholar 

  14. Ozcelik O, Cenk Haytac M, Seydaoglu G (2008) Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: a randomized placebo-controlled clinical trial. J Clin Periodontol 35(2):147–156

    Article  PubMed  Google Scholar 

  15. Sanz-Moliner JD, Nart J, Cohen R et al (2013) The effect of an 810-nm diode laser on postoperative pain and tissue response after modified Widman flap surgery: a pilot study in humans. J Periodontol 84(2):152–158

    Article  PubMed  Google Scholar 

  16. D’Errico JA, Ouyang H, Berry JE et al (1999) Immortalized cementoblasts and periodontal ligament cells in culture. Bone 25:39–47

    Article  PubMed  Google Scholar 

  17. Hakki SS, Bozkurt B, Hakki EE et al (2014) Bone morphogenetic protein-2, -6, and -7 differently regulate osteogenic differentiation of human periodontal ligament stem cells. J Biomed Mater Res B Appl Biomater 102(1):119–130

    Article  PubMed  Google Scholar 

  18. Hakki SS, Foster BL, Nagatomo KJ et al (2010) Bone morphogenetic protein-7 enhances cementoblast function in vitro. J Periodontol 81(11):1663–1674

    Article  CAS  PubMed  Google Scholar 

  19. Solmaz H, Dervisoglu S, Gulsoy M et al (2016) Laser biostimulation of wound healing: bioimpedance measurements support histology. Lasers Med Sci 31(8):1547–1554

    Article  PubMed  Google Scholar 

  20. Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9(11–12):1148–1156

    Article  CAS  PubMed  Google Scholar 

  21. Tang E, Khan I, Andreana S et al (2016) Laser-activated transforming growth factor-β1 induces human β-defensin 2: implications for laser therapies for periodontitis and peri-implantitis. J Periodontal Res. doi:10.1111/jre.12399

    Google Scholar 

  22. Ginani F, Soares DM, Barreto MP et al (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194

    Article  PubMed  Google Scholar 

  23. Tschon M, Incerti-Parenti S, Cepollaro S et al (2015) Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. J Biomed Opt 20(7):78002

    Article  PubMed  Google Scholar 

  24. Migliario M, Pittarella P, Fanuli M et al (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29(4):1463–1467

    Article  PubMed  Google Scholar 

  25. Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E et al (2014) The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci 29(4):1479–1484

    PubMed  Google Scholar 

  26. Jawad MM, Husein A, Azlina A et al (2013) Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt 18(12):128001

    Article  PubMed  Google Scholar 

  27. Bloise N, Ceccarelli G, Minzioni P et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt 18(12):128006

    Article  PubMed  Google Scholar 

  28. Tim CR, Pinto KN, Rossi BR et al (2014) Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci 29(1):147–156

    Article  PubMed  Google Scholar 

  29. Altan AB, Bicakci AA, Mutaf HI et al (2015) The effects of low-level laser therapy on orthodontically induced root resorption. Lasers Med Sci 30(8):2067–2076

    Article  PubMed  Google Scholar 

  30. Hakki SS, Nohutcu RM, Hakki EE et al (2005) Dexamethasone and basic-fibroblast growth factor regulate markers of mineralization in cementoblasts in vitro. J Periodontol 76(9):1550–1558

    Article  CAS  PubMed  Google Scholar 

  31. Ripamonti U, Renton L (2006) Bone morphogenetic proteins and the induction of periodontal tissue regeneration. Periodontol 41:73–87

    Article  Google Scholar 

  32. Kishigami S, Mishina Y (2005) BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 16:265–278

    Article  CAS  PubMed  Google Scholar 

  33. Thesleff I, Sharpe P (1997) Signalling networks regulating dental development. Mech Dev 67:111–123

    Article  CAS  PubMed  Google Scholar 

  34. Aberg T, Wozney J, Thesleff I (1997) Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 210:383–396

    Article  CAS  PubMed  Google Scholar 

  35. Kokabu S, Gamer L, Cox K et al (2012) BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol Endocrinol 26(1):87–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A mouse-derived immortalized cementoblast cell line (OCCM.30) was kindly provided by Prof Martha J. Somerman, from NIH. This study was funded from Selcuk University Research Foundation, Konya, Turkey (SSH). This work was performed at Selcuk University, Research Center of Dental Faculty, Konya, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema S. Hakki.

Ethics declarations

Cells used in this study were a mouse-derived immortalized cementoblast cell line (OCCM.30) and were kindly provided by Prof Martha J. Somerman, from NIH. Ethical approval is not needed.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was supported by Selcuk University Research Foundation. Grant was used for cell culture studies and SEM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, S.B., Hakki, E.E., Kayis, S.A. et al. Biostimulation with diode laser positively regulates cementoblast functions, in vitro. Lasers Med Sci 32, 911–919 (2017). https://doi.org/10.1007/s10103-017-2192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2192-z

Keywords

Navigation