Skip to main content
Log in

Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wainwright M (1998) Photodynamic antimicrobial chemotherapy. J Antimicrob Chemother 42:13–28. doi:10.1093/jac/42.1.13

    Article  CAS  PubMed  Google Scholar 

  2. Giroldo LM, Felipe MP, Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–112. doi:10.1007/s10103-007-0530-2

    Article  PubMed  Google Scholar 

  3. Detty MR, Gibson SJ, Wagner J (2004) Current Clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915. doi:10.1021/jm040074b

    Article  CAS  PubMed  Google Scholar 

  4. Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91:566–571. doi:10.1016/j.solmat.2006.11.005

    Article  CAS  Google Scholar 

  5. Zhang D, Lamier SM, Downing JA, Aventt JL, Lum J, Mc Hale JL (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A 195:72–80. doi:10.1016/j.jphotochem.2007.07.038

    Article  CAS  Google Scholar 

  6. Comini LR, Nunez Montoya SC, Samiento M, Cabrera JL, Arguello GA (2007) Characterizing some photophysical, photochemical and photobiological properties of photosensitizing anthraquinones. J Photochem Photobiol A 188:185–191. doi:10.1016/j.jphotochem.2006.12.011

    Article  CAS  Google Scholar 

  7. Leung MH, Kee TW (2009) Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir 25:5773–5777. doi:10.1021/la804215v

    Article  CAS  PubMed  Google Scholar 

  8. Huntosava V, Alvarez L, Bryndzova L, Nadona Z, Jancura D, Buriankova L, Bonneau S, Brault D, Miskovsky P, Sureau F (2010) Interaction dynamics of hypericin with low-density lipoproteins and U87-MG cells. Int J Pharm 389:32–40. doi:10.1016/j.ijpharm.2010.01.010

    Article  Google Scholar 

  9. Su Y, Sun J, Rai S, Cai Y, Yang Y (2011) Photodynamic antimicrobial activity of hypocrellin A. J Photochem Photobiol B 103:29–34. doi:10.1016/j.jphotobiol.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  10. Schrire BD (2005) Tribe Indigofereae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the Word. Royal Botanic Gardens, Kew, pp 361–366

    Google Scholar 

  11. Eisinger SM (1987) O gênero Indigofera L. (Leguminosae- Papilionoideae- Indigofereae) no Rio Grande do Sul- Brasil. Acta Bot Bras 1:123–140

    Article  Google Scholar 

  12. M Cola-Miranda, V Barbastefano, CA Hiruma-Lima, TR Calvo, W Vilegas, ARMS Brito (2006) Atividade antiulcerogênica de Indigofera truxillensis Kunth. Biota Neotrop Adv. ISSN 1676-0603

  13. Faria-Silva E, Cola M, Calvo TR, Barbastefano V, Ferreira AL, Michelatto DP, Almeida ACA, Hiruma-Lima CA, Vilegas W, Brito ARMS (2007) Antioxidative activity of indigo and its preventive effects against ethanol-induced DNA damage in rat gastric mucosa. Planta Med 73:1241–1246. doi:10.1055/s-2007-981613

    Article  Google Scholar 

  14. Calvo RT, Cardoso CRP, Moura ACS, Santos LC, Colus IMS, Vilegas W, Varanda EA (2011) Mutagenic activity of Indigofera truxillensis and I. suffruticosa aerial parts. Evid Based Complement Alternat. doi:10.1093/ecam/nep123

    Google Scholar 

  15. Costa EV, Pinheiro MLB, Xavier CM, Silva JRA, Amaral ACF, Souza ADL, Barison A, Campos FR, Ferreira AG, Machado GMC, Leon LLPJ (2006) A Pyrimidine-β-carboline and other alkaloids from Annona foetida with antileishmanial activity. J Nat Prod 69:292–294. doi:10.1021/np050422s

    Article  CAS  PubMed  Google Scholar 

  16. Chanayath N, Lhieochaiphant S, Phutrakul S (2002) Pigment extraction technique from the leaves of Indigofera tinctoria Linn. and Baphicacanthuscusia Brem. and chemical structure analysis of their major compounds. Chiang Mai Univ J 1:49–60

    Google Scholar 

  17. Laitonjam WS, Wangkheirakpam SD (2011) Comparative study of the major components of the indigo dye obtained from Strobilanthes flaccidifolius Nees. and Indigofera tinctoria Linn. Int J Plant Physiol Biochem 3:108–116, ISSN-2141-2162 ©2011

    CAS  Google Scholar 

  18. Alves E, Costa L, Carvalho CMB, Tomei JPC, Fautino MA, Neves MGPMS, Tome AC, Cavaleiro JAS, Cunha A, Almeida A (2009) Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol 9:70. doi:10.1186/1471-2180-9-70

    Article  PubMed Central  PubMed  Google Scholar 

  19. Robertson PKJ, Black KD, Adams M, Willis K, Buchan F, Orr H, Lawton L, McCullagh C (2009) A new generation of biocides for control of crustacea in fish farms. J Photochem Photobiol B 95:58–63. doi:10.1016/j.jphotobiol.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  20. Andreazza NL, Lourenço CC, Siqueira CAT, Sawaya ACHF, Lapinski AG, Khouri S, Zamuner SR, Munin E, Salvador MJ (2013) Photodynamic inactivation of yeast and bacteria by extracts of Alternanthera brasiliana. Curr Drug Targets 14:1015–1022

    Article  CAS  PubMed  Google Scholar 

  21. Stefanello ME, Cervi AC, Ito IY, Salvador MJ, Wisniewski A Jr, Simionatto EL (2008) Chemical composition and antimicrobial activity of essential oils of Eugenia chlorophylla (Myrtaceae). J Essent Oil Res 20:75–78. doi:10.1080/10412905.2008.9699427

    Article  CAS  Google Scholar 

  22. National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-Forming Filamentous Fungi (2008) Proposed Standard M38-P. National Committee for Clinical Laboratory Standard, Wayne, 28p

    Google Scholar 

  23. Salvador MJ, Zucchi OLAD, Candido RC, Ito IY, Dias DA (2004) In vitro antimicrobial Activity of Crude Extracts and Isolated Constituents of Alternanthera maritima. Pharm Biol 42:138–148. doi:10.1080/13880200490511954

    Article  Google Scholar 

  24. Gasparetto A, Lapinski TF, Zamuner SR, Khouri S, Alves LP, Munin E, Salvador MJ (2010) Extracts from Alternanthera maritima as natural photosensitizers in photodynamic antimicrobial chemoterapy (PACT). J Photochem Photobiol 99:15–20. doi:10.1016/j.jphotobiol.2010.01.009

    Article  CAS  Google Scholar 

  25. Gandra N, Frank AT, Le Gendre O, Sawwan N, Aebisher D, Liebman JF, Houk KN, Greer A, Gao R (2006) Possible singlet oxygen generation from the photolysis of indigo dyes in methanol, DMSO, water, and ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate. Tetrahedron 62:10771–10776. doi:10.1016/j.tet.2006.08.095

    Article  CAS  Google Scholar 

  26. Weinstein J, Wyman GM (1956) Spectroscopic studies on Dyes. I, The Association of indigo dyes in the solid phase. J Am Chem Soc 78:2387–2390. doi:10.1021/ja01592a012

    Article  CAS  Google Scholar 

  27. Wyman GM (1956) Spectroscopic studies on dyes. III. The structure of indanthrones. J Am Chem Soc 78:4599–4604. doi:10.1021/ja01599a023

    Article  CAS  Google Scholar 

  28. Kobayashi T, Rentzepis PM (1979) On the picosecond kinetics and photostability of indigo and 6,6′-dimethoxyindigo. J Chem Phys 70:886–892. doi:10.1063/1.437479

    Article  CAS  Google Scholar 

  29. Klessinger M (1980) Captodative substituent effects and the chromophoric system of Indigo. Angew Chem Int Ed Engl 19:908–909. doi:10.1002/anie.198009081

    Article  Google Scholar 

  30. Wyman GM, Zenhausern AF (1965) Spectroscopic studies on dyes. V Derivatives of cis-Indigo. J Org Chem 30:2348–2352. doi:10.1021/jo01018a055

    Article  CAS  Google Scholar 

  31. Wyman GM (1994) Reminiscences of an accidental Photochemist. EPA News Lett 50:9

    CAS  Google Scholar 

  32. Miliani C, Romani A, Favaro G (1998) A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectrochim Acta A 54:581–588. doi:10.1016/S1386-1425(97)00240-0

    Article  Google Scholar 

  33. Seixas J, de Melo AP, Moura MJM (2004) Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms. J Phys Chem A 108:6975–6981. doi:10.1021/jp049076y

    Article  Google Scholar 

  34. Usacheva MN, Teichert MC, Biel MA (2003) The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J Photochem Photobiol B 71:87–98. doi:10.1016/j.jphotobiol.2003.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Ishikawa S, Suzuki K, Fukuda E, Arihara K, Yamamoto Y, Mukai T, Itoh M (2010) Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett 584:770–774. doi:10.1016/j.febslet.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  36. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of uptake of a cationic water-soluble pyridinium zincphthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 44:522–527. doi:10.1128/AAC. 44.3.522-527.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dai T, Huang Y-Y, Hamblim MR (2009) Photodynamic therapy for localized infections - state of the art. Photodiagnosis Photodyn Ther 6:170–188. doi:10.1016/j.pdpdt.2009.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Demidova TN, Hamblin M (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17:245–254

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Bublik M, Head C, Benharash P, Paiva M, Eshraghi A, Kim T, Saxton R (2006) Hypericin and pulsed Laser therapy of squamous cell cancer in vitro. Photomed Laser Surg 24:341–347. doi:10.1089/pho.2006.24.341

    Article  CAS  PubMed  Google Scholar 

  40. Dovigo LN, Pavarina AC, Ribeiro AP, Brunetti IL, Costa CA, Jacomassi DP, Bagnato VS, Kurachi C (2011) Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 87:895–903. doi:10.1111/j.1751-1097.2011.00937.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP, CAPES, CNPq, and FAEPEX-UNICAMP for financial support, Prof. Jorge Yoshio Tamashiro for the plant identification, and to Larissa Levy for technical assistance in the experiments.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalia Luiza Andreazza or Marcos José Salvador.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreazza, N.L., de Lourenço, C.C., Stefanello, M.É.A. et al. Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae). Lasers Med Sci 30, 1315–1324 (2015). https://doi.org/10.1007/s10103-015-1735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1735-4

Keywords

Navigation