Skip to main content
Log in

Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensitizer, and this was due to electron transfer to the dye triplet state from azide anion, producing azidyl radical. Here we compare this effect using six different homologous phenothiazinium dyes: methylene blue, toluidine blue O, new methylene blue, dimethylmethylene blue, azure A, and azure B. We found both significant potentiation (up to 2 logs) and also significant inhibition (>3 logs) of killing by adding 10 mM azide depending on Gram classification, washing the dye from the cells, and dye structure. Killing of E. coti was potentiated with all 6 dyes after a wash, while S. aureus killing was only potentiated by MB and TBO with a wash and DMMB with no wash. More lipophilic dyes (higher log P value, such as DMMB) were more likely to show potentiation. We conclude that the Type I photochemical mechanism (potentiation with azide) likely depends on the microenvironment, i.e. higher binding of dye to bacteria. Bacterial dye-binding is thought to be higher with Gram-negative compared to Gram-positive bacteria, when unbound dye has been washed away, and with more lipophilic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wainwright, D. A. Phoenix, J. Marland, D. R. Wareing and F. J. Bolton, A study of photobactericidal activity in the phenothiazinium series, FEMS Immunol. Med. Microbiol, 1997, 19, 75.

    Article  CAS  PubMed  Google Scholar 

  2. I. Walker, S. A. Gorman, R. D. Cox, D. I. Vernon, J. Griffiths and S. B. Brown, A comparative analysis of phenothiazinium salts for the photosensitisation of murine fibrosarcoma (RIF-1) cells in vitro, Photochem. Photobiol. Sci., 2004, 3, 653.

    Article  CAS  PubMed  Google Scholar 

  3. M. Wainwright, H. Smalley, O. Scully and E. Lotfipour, Comparative photodynamic evaluation of new phenothiazinium derivatives against Propionibacterium acnes, Photochem. Photobiol, 2012, 88, 523.

    Article  CAS  PubMed  Google Scholar 

  4. M. Wainwright, H. Mohr and W. H. Walker, Phenothiazinium derivatives for pathogen inactivation in blood products, J. Photochem. Photobiol, B, 2007, 86, 45.

    Article  CAS  Google Scholar 

  5. M. Wainwright and K. B. Crossley, Methylene Blue—a therapeutic dye for all seasons?, J. Chemother., 2002, 14, 431.

    Article  CAS  PubMed  Google Scholar 

  6. M. Wainwright and L. Amaral, The phenothiazinium chromophore and the evolution of antimalarial drugs, Trop. Med. Int. Health, 2005, 10, 501.

    Article  CAS  PubMed  Google Scholar 

  7. P. Sikka, V. K. Bindra, S. Kapoor, V. Jain and K. K. Saxena, Blue cures blue but be cautious, J. Pharm. BioAllied Sci., 2011, 3, 543.

    Article  PubMed  PubMed Central  Google Scholar 

  8. R. H. Schirmer, H. Adler, M. Pickhardt and E. Mandelkow, “Lest we forget you—methylene blue...”, Neurobiol. Aging, 2011, 32, 2325 e7.

    Article  PubMed  CAS  Google Scholar 

  9. D. H. Jang, L. S. Nelson and R. S. Hoffman, Methylene Blue for Distributive Shock: A Potential New Use of an Old Anti dote, J. Med. Toxicol, 2013, 9, 242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Wainwright, D. A. Phoenix, S. L. Laycock, D. R. Wareing and P. A. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160, 177.

    Article  CAS  PubMed  Google Scholar 

  11. L. Huang, Y. Xuan, Y. Koide, T. Zhiyentayev, M. Tanaka and M. R. Hamblin, Type I and Type ll mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria, Lasers Surg. Med., 2012, 44, 490.

    Article  PubMed  PubMed Central  Google Scholar 

  12. A. Tavares, S. R. Dias, C. M. Carvalho, M. A. Faustino, J. P. Tome, M. G. Neves, A. C. Tome, J. A. Cavaleiro, A. Cunha, N. C. Gomes, E. Alves and A. Almeida, Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1659.

    Article  CAS  PubMed  Google Scholar 

  13. M. Wainwright, D. A. Phoenix, M. Gaskell and B. Marshall, Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp, J. Antimi-crob. Chemother., 1999, 44, 823.

    Article  CAS  Google Scholar 

  14. L. Rice, M. Wainwright and D. A. Phoemix, Phenothiazine photosensitizers. llI. Activity of methylene blue derivatives against pigmented melanoma cell lines, J. Chemother., 2000, 12, 94.

    CAS  PubMed  Google Scholar 

  15. K. Nakamura, K. Ishiyama, H. Ikai, T. Kanno, K. Sasaki, Y. Niwano and M. Kohno, Reevaluation of analytical methods for photogenerated singlet oxygen, J. Clin. Biochem. Nutr., 2011, 49, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. D. Jett, K. L. Hatter, M. M. Huycke and M. S. Gilmore, Simplified agar plate method for quantifying viable bacteria, BioTechniques, 1997, 23, 648.

    Article  CAS  PubMed  Google Scholar 

  17. T. N. Demidova and M. R. Hamblin, Effect of cell-photo-sensitizer binding and cell density on microbial photo-inactivation, Antimicrob. Agents Chemother., 2005, 49, 2329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. P. Sanchez-Cruz, F. Dejesus-Andino and A. E. Alegria, Roles of hydrophilicities and hydrophobicities of dye and sacrificial electron donor on the photochemical pathway, J. Photochem. Photobiol, A, 2012, 236, 54.

    Article  CAS  Google Scholar 

  19. P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna and M. R. Hamblin, Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type ll photochemical mechanism, Free Radicals Biol. Med., 2007, 43, 711.

    Article  CAS  Google Scholar 

  20. C. S. Foote, Definition of type I and type ll photosensitized oxidation, Photochem. Photobiol, 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  21. C. S. Foote, Mechanisms of photooxygenation, Prog. Clin. Biol. Res., 1984, 170, 3.

    CAS  PubMed  Google Scholar 

  22. M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours, J. Photochem. Photobiol, B, 1997, 39, 1.

    Article  CAS  Google Scholar 

  23. X. Ragas, X. He, M. Agut, M. Roxo-Rosa, A. R. Gonsalves, A. C. Serra and S. Nonell, Singlet oxygen in antimicrobial photodynamic therapy: photosensitizer-dependent production and decay in E. coli, Molecules, 2013, 18, 2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R. M. Szeimies and W. Baumler, The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 7223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Z. B. Alfassi, A. Hamiman, R. E. Huie, S. Mosseri and P. Neta, The Redox Potential of the Azide/Azidyl Couple, J. Phys. Chem., 1987, 91, 2120.

    Article  CAS  Google Scholar 

  26. C. Merli, E. Petrucci, A. Da Pozzo and M. Pernetti, Fenton-type treatment: state of the art, Ann. Chim., 2003, 93, 761.

    CAS  PubMed  Google Scholar 

  27. M. Price, J. J. Reiners, A. M. Santiago and D. Kessel, Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy, Photochem. Photobiol., 2009, 85, 1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Nikaido and M. Vaara, Molecular basis of bacterial outer membrane permeability, Microbiol. Rev., 1985, 49, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Mechanism of uptake of a cat-ionic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob. Agents Chemother., 2000, 44, 522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. E. Hancock, S. W. Farmer, Z. S. Li and K. Poole, Interaction of aminoglycosides with the outer membranes and purified llpopolysaccharide and OmpF porin of Escherichia coli, Antimicrob. Agents Chemother., 1991, 35, 1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Q. Guo, Q. Yue, J. Zhao, L. Wang, H. Wang, X. Wei, J. Liu and J. Jia, How far can hydroxyl radicals travel? An electrochemical study based on a DNA mediated electron transfer process, Chem. Commun., 2011, 47, 11906.

    Article  CAS  Google Scholar 

  32. G. Diao, L. Li and Z. Zhang, The electrochemical reduction of fullerenes, C60 and C70, Talanta, 1996, 43, 1633.

    Article  CAS  PubMed  Google Scholar 

  33. A. Mahboob, S. Vassiliev, P. K. Poddutoori, A. van der Est and D. Bruce, Factors controlling the redox potential of ZnCe6 in an engineered bacterioferritin photochemical ‘reaction centre’, PLoS One, 2013, 8, e68421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H. C. Lichstein and M. H. Soule, Studies of the Effect of Sodium Azide on Microbic Growth and Respiration: I. The Action of Sodium Azide on Microbic Growth, J. Bacteriol., 1944, 47, 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L. Huang, T. G. St Denis, Y. Xuan, Y. Y. Huang, M. Tanaka, A. Zadlo, T. Sarna and M. R. Hamblin, Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide: role of ambient oxygen and azide radicals, Free Radicals Biol. Med., 2012, 53, 2062.

    Article  CAS  Google Scholar 

  36. T. G. St Denis, D. Vecchio, A. Zadlo, A. Rineh, M. Sadasivam, P. Avci, L. Huang, A. Kozinska, R. Chandran, T. Sarna and M. R. Hamblin, Thiocyanate potentiates antimicrobial photodynamic therapy: In situ generation of the sulfur trioxide radical anion by singlet oxygen, Free Radicals Biol. Med., 2013, 65C, 800.

    Article  CAS  Google Scholar 

  37. S. H. Kim, S. H. Song and Y. J. Yoo, Selection of mediators for bioelectrochemical nitrate reduction, Biotechnol. Bioprocess Eng., 2005, 10, 47.

    Article  CAS  Google Scholar 

  38. S. Chakraborty, S. Ahamed, S. Subrata Pal and S. K. Saha, Cyclic Voltammetric Investigations of Thiazine Dyes on Modified Electrodes, ISRN Electrochemi., 2013, 2013, DOI: 10.1155/2013/959128.

    Google Scholar 

  39. V. A. Bespalov, I. B. Zhulin and B. L. Taylor, Behavioral responses of Escherichia coli to changes in redox potential, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 10084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. R. Norris and D. W. Ribbons, Methods in Microbiology, Academic Press, 1970.

    Google Scholar 

  41. S. D. Roller, H. P. Bennetto, G. M. Delaney, J. R. Mason, S. L. Stirling and C. F. Thurston, Electron transfer coupling in microbial fuel cells: 1. Comparison of redox mediator reduction rates and respiratory rates of bacteria, J. Chem. Technol. Biotechnol., 1984, 34B, 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00021h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasimova, K.R., Sadasivam, M., Landi, G. et al. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion. Photochem Photobiol Sci 13, 1541–1548 (2014). https://doi.org/10.1039/c4pp00021h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00021h

Navigation