Skip to main content
Log in

InGaP 670-nm laser therapy combined with a hydroalcoholic extract of Solidago chilensis Meyen in burn injuries

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Therapies that accelerate the healing of burn injuries, improving the quality of life of the patient and reducing the cost of treatment are important. This study evaluated the effects of InGaP 670-nm laser therapy combined with a hydroalcoholic extract of Solidago chilensis leaves on burn wound healing in rats. Seventy-two rats were divided randomly into four groups: control untreated (C), treated with InGaP 670-nm laser with power density of 0.41 W/cm2 and energy density of 4.93 J/cm2 (L), treated with S. chilensis extract (S) and treated with S. chilensis extract and laser (LS). Second-degree burns were produced on the back of the animals with metal plate. Wound samples were collected on days 7, 14 and 21 of treatment for structural analysis, morphometry and Western blotting to quantify the expression of transforming growth factor beta 1 (TGF-β1) and vascular endothelial growth factor (VEGF). The results showed that InGaP laser irradiation at 670 nm alone and combined with extract of S. chilensis promoted significant tissue repair responses in this experimental model, increasing the number of fibroblasts, collagen fibres and newly formed blood vessels throughout the experimental period and decreasing the number of granulocytes in burn wounds of second degree in all treated groups. Exclusive treatment of burn wounds with the hydroalcoholic extract of S. chilensis provided similar quantitative results to those seen in the untreated group throughout the experimental period. Therefore, it was observed in the L and LS groups different responses in the expression of TGF-β1 and VEGF. The application of 670-nm laser alone or combined with the extract of S. chilensis promoted favourable responses in tissue repair of second-degree burns in this experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ezzati A, Bayat M, Khoshvaghti A (2010) Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study. Photomed Laser Surg 28:603–611

    Article  CAS  PubMed  Google Scholar 

  2. Meena K, Mohan AV, Sharath B, Somayaji SN, Bairy KL (2011) Effect of topical phenytoin on burn wound healing in rats. Indian J Exp Biol 49:56–59

    CAS  PubMed  Google Scholar 

  3. Khoshvaghti A, Zibamanzarmofrad M, Bayat M (2011) Effect of low-level treatment with an 80-Hz pulsed infrared diode laser on mast-cell numbers and degranulation in a rat model of third-degree burn. Photomed Laser Surg 29:597–604

    Article  PubMed  Google Scholar 

  4. Benaim F (1991) Clasificación de las quemaduras por su profundidad; necesidad de unificar el criterio para su designación (burn clasificación according to skin depth; necessity to adopt a uniform criterion). Rev Argent Quemad 6:22–26

    Google Scholar 

  5. Aziz Z, Abu SF, Chong NJ (2012) A systematic review of silver-containing dressings and topical silver agents (used with dressings) for burn wounds. Burns 38:307–318

    Article  CAS  PubMed  Google Scholar 

  6. Forjuoh SN (2006) Burns in low- and middle-income countries: a review of available literature on descriptive epidemiology, risk factors, treatment, and prevention. Burns 32:529–537

    Article  CAS  PubMed  Google Scholar 

  7. Peck MD (2011) Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37:1087–1100

    Article  PubMed  Google Scholar 

  8. Cruz BF, Cordovil PBL, Batista KNM (2012) Perfil epidemiológico de pacientes que sofreram queimaduras no Brasil: revisão de literatura. Rev Bras Queimaduras 11:246–250

    Google Scholar 

  9. Khorasani G, Hosseinimehr SJ, Zamani P, Ghasemi M, Ahmadi A (2008) The effect of saffron (Crocus sativus) extract for healing of second-degree burn wounds in rats. Keio J Med 57:190–195

    Article  PubMed  Google Scholar 

  10. Olczyk P, Komosinska-Vassev K, Wisowski G, Mencner L, Stojko J, Kozma EM (2014) Propolis modulates fibronectin expression in the matrix of thermal injury. Biomed Res Int 2014:748101

    PubMed Central  PubMed  Google Scholar 

  11. Chung JY, Herbert ME (2001) Myth: silver sulfadiazine is the best treatment for minor burns. West J Med 175:205–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Beheshti A, Shafigh Y, Zangivand AA, Samiee-Rad F, Hassanzadeh G, Shafigh N (2013) Comparison of topical sucralfate and silver sulfadiazine cream in second degree burns in rats. Adv Clin Exp Med 22:481–487

    PubMed  Google Scholar 

  13. Freitas RPA, Barcelos APM, Nóbrega BM, Macedo AB, Oliveira AR, Ramos AMO, Vieira WHB (2013) Low-level laser therapy and microcurrent in burn wound healing in rats. Associated or isolated therapy? Fisioter Pesq 20:24–30

    Article  Google Scholar 

  14. Khodadadi L, Shafieyan S, Aghdami N, Baharvand H (2008) Cell therapy in burn repair. Yakhteh Med J 10:167–178

    Google Scholar 

  15. Chiarotto GB, Neves LMG, Esquisatto MAM, do Amaral MEC, dos Santos GMT, Mendonça FAS (2014) Effects of laser irradiation (670-nm InGaP and 830-nm GaAlAs) on burn of second-degree in rats. Lasers Med Sci 29:1685–1693

    Article  PubMed  Google Scholar 

  16. Ezzati A, Bayat M, Taheri S, Mohsenifar Z (2009) Low-level laser therapy with pulsed infrared laser accelerates third-degree burn healing process in rats. J Rehabil Res Dev 46:543–554

    Article  PubMed  Google Scholar 

  17. Bayat M, Vasheghani MM, Razavi N, Taheri S, Rakhshan M (2005) Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. J Photochem Photobiol B 78:171–177

    Article  CAS  PubMed  Google Scholar 

  18. Vasheghani MM, Bayat M, Dadpay M, Habibie M, Rezaei F (2009) Low-level laser therapy using 80-Hz pulsed infrared diode laser accelerates third-degree burn healing in rat. Photomed Laser Surg 27:959–964

    Article  PubMed  Google Scholar 

  19. Núñez SC, França CM, Silva DFT, Nogueira GEC, Prates RA, Ribeiro MS (2013) The influence of red laser irradiation timeline on burn healing in rats. Lasers Med Sci 28:633–641

    Article  PubMed  Google Scholar 

  20. Melo CAS, Lima ALLA, Brasil IRC, Castro e Silva O Jr, Magalhães DV, Marcassa LG, Bagnato VS (2001) Characterization of light penetration in rat tissues. J Clin Laser Med Surg 19:175–179

    Article  CAS  PubMed  Google Scholar 

  21. Pugliese LS, Medrado AP, Reis SRA, Andrade ZA (2013) The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesqui Odonto Bras 17:307–313

    Article  Google Scholar 

  22. Renno ACM, Iwama AM, Shima P, Fernandes KR, Carvalho JG, de Oliveira P, Ribeiro DA (2011) Effect of low-level laser therapy (660 nm) on the healing of second-degree skin burns in rats. J Cosmet Laser Ther 13:237–242

    Article  PubMed  Google Scholar 

  23. Longo L (2010) Non-surgical laser and light in the treatment of chronic diseases: a review based on personal experiences. Laser Phys Lett 7:771–786

    Article  Google Scholar 

  24. Meireles GC, Santos JN, Chagas PO, Moura AP, Pinheiro AL (2008) Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed Laser Surg 26:47–54

    Article  PubMed  Google Scholar 

  25. Al-Watban FA, Delgado GD (2005) Burn healing with a diode laser: 670 nm at different doses as compared to a placebo group. Photomed Laser Surg 23:245–250

    Article  PubMed  Google Scholar 

  26. Govindarajan R, Kumar B, Vijayakumar M, Pushpangadan P (2007) Ethnopharmacological approaches to wound healing exploring medicinal plants of India. J Ethnopharmacol 114:103–113

    Article  PubMed  Google Scholar 

  27. de Gaspi FOG, Foglio MA, Carvalho JE, Santos GMT, Testa M, Passarini JR Jr, Moraes CP, Esquisatto MAM, Mendonça JS, Mendonça FAZ (2011) Effects of the topical application of hydroalcoholic leaf extract of Oncidium flexuosum Sims. (Orchidaceae) and microcurrent on the healing of wounds surgically induced in Wistar rats. Evid Based Complement Alternat Med 2011:1–9

    Article  Google Scholar 

  28. Migliato KF, Chiosini MA, Mendonça FAS, Esquisatto MAM, Salgado HR, Santos GMT (2011) Effect of glycolic extract of Dillenia indica L. combined with microcurrent stimulation on experimental lesions in Wistar rats. Wounds 23:111–120

    Google Scholar 

  29. Castro FCB, Magre A, Cherpinski R, Zelante PM, Neves LMG, Esquisatto MAM, Mendonça FAZ, Santos GMT (2012) Effects of microcurrent application alone or in combination with topical Hypericum perforatum L. and Arnica montana L. on surgically induced wound healing in Wistar rats. Homeopathy 101:147–153

    Article  PubMed  Google Scholar 

  30. Lorenzi H, Matos FJA (2008) Plantas Medicinais no Brasil: Nativas e Exóticas, 2nd edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  31. Torres LMB, Akisue MK, Roque NF (1987) Quercitrin from Solidago microglossa DC, the Arnica of Brasil. Rev Farm Bioquim USP 23:33–40

    CAS  Google Scholar 

  32. Smolarek FSF, Nunes PMT, Cansian FC, Mercali CA, Carvalho JLS, Dias JFG, Miguel OG (2009) Phytochemical screening and biologic activities of plant species Solidago microglossa D.C. Vis Acad 10:7782

  33. Goulart S, Moritz MI, Lang KL, Liz R, Schenkel EP, Fröde TS (2007) Anti-inflammatory evaluation of Solidago chilensis in a murine model of pleurisy. J Ethnopharmacol 113:346–353

    Article  PubMed  Google Scholar 

  34. Assini FL, Fabricio EJ, Lang KL (2013) Efeitos farmacológicos do extrato aquoso de Solidago chilensis Meyen em camundongos. Rev Bras Plantas Med 15:130–134

    Article  Google Scholar 

  35. Tiansheng L, Menelaou MA, Vargas D, Fronczek FR, Fischer NH (1993) Polyacetylenes and diterpenes from Solidago canadensis. Phytochemistry 32:1483–1488

    Article  Google Scholar 

  36. Reznicek G, Jurenitsch J, Plasun M, Korhammer S, Haslinger E, Hiller K, Kubelka W (1991) Four major saponins from Solidago canadensis. Phytochemistry 30:1629–1633

    Article  CAS  PubMed  Google Scholar 

  37. Bohlmann F, Fritz U, King RM, Robinson H (1980) Sesquiterpene and diterpene derivatives from Solidago species. Phytochemistry 19:2655–2661

    Article  CAS  Google Scholar 

  38. Morel AF, Dias GO, Porto C, Simionatto E, Stüker CZ, Dalcol II (2006) Antimicrobial activity of extractives of Solidago microglossa. Fitoterapia 77:453–455

    Article  CAS  PubMed  Google Scholar 

  39. Facury Neto MA, Fagundes DJ, Beletti ME, Novo NF, Juliano Y, Penha-Silva N (2004) Systemic use of Solidago microglossa DC in the cicatrization of open cutaneous wounds in rats. Braz J Morphol Sci 21:207–210

    Google Scholar 

  40. Fenner R, Betti AH, Mentz LA, Rates SMK (2006) Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica. Rev Bras Cienc Farm 42:369–394

    Article  Google Scholar 

  41. Andrade AG, Lima CF, Albuquerque AKB (2010) Effects of the therapeutic laser on the wound healing of burns: a bibliographic review. Rev Bras Queimaduras 9:21–30

    Google Scholar 

  42. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum oench) hulls and flour. J Ethnopharmacol 72:35–42

    Article  CAS  PubMed  Google Scholar 

  43. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolics compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  Google Scholar 

  44. Harborne JB (1984) Phytochemical methods. A guide to modern techniques of plant analysis, 2nd ed. Chapman and Hall

  45. Simões CMO, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (2007) Farmacognosia: da planta ao medicamento, 6th edn. UFSC, Rio Grande do Sul

    Google Scholar 

  46. Wagner H, Bladt S (1996) Plant drug analysis: a thin layer chromatography atlas, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  47. Chandra S, Mejia EG (2004) Polyphenolic compounds, antioxidant capacity and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to Mate (Ilex paraguariensis) and Green (Camellia sinensis) Teas. J Agric Food Chem 52:35839

    Article  Google Scholar 

  48. Kosalec I, Pepeljnjak S, Bakmaz M, Vladimir-Knezevic S (2005) Flavonoid analysis and antimicrobial activity of commercially available propolis product. Acta Pharm 55:423–430

    CAS  PubMed  Google Scholar 

  49. International Guiding Principles for Biomedical Research Involving Animals (1985) CIOMS

  50. Guide for the Care and Use of Laboratory Animals (1996) NIH

  51. Neves LMG, Matheus RL, Santos GMT, Esquisatto MAM, Amaral MEC, Mendonça FAS (2013) Effects of microcurrent application and 670 nm InGaP low-level laser irradiation on experimental wound healing in healthy and diabetic Wistar rats. Laser Phys 23(3):035604

    Article  Google Scholar 

  52. Mendonça JS, Neves LMG, Esquisatto MAM, Mendonça FAS, Santos GMT (2013) Comparative study of the application of microcurrent and AsGa 904 nm laser radiation in the process of repair after calvaria bone excision in rats. Laser Phys 23:035605

    Article  Google Scholar 

  53. Bayat M, Vasheghani MM, Razavie N, Jalili MR (2008) Effects of low-level laser therapy on mast cell number and degranulation in third-degree burns of rats. J Rehabil Res Dev 45:931–938

    Article  PubMed  Google Scholar 

  54. Ukong S, Ampawong S, Kengkoom K (2008) Collagen measurement and staining pattern of wound healing comparison with fixations and stains. J Micr Soc 22:37–41

    Google Scholar 

  55. Miller RG (1981) Simultaneous statistical inference, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  56. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hawkins D, Abrahamse H (2007) Phototherapy—a treatment modality for wound healing and pain relief. Afr J Biomed Res 10:99–109

    Google Scholar 

  58. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325

    Article  PubMed  Google Scholar 

  59. Peplow PV, Chung TY, Baxter GD (2012) Photodynamic modulation of wound healing: a review of human and animal studies. Photomed Laser Surg 30:118–148

    Article  CAS  PubMed  Google Scholar 

  60. Nayak BS, Kumar AP (2007) Influence of helium-neon laser photostimulation on excision wound healing in Wistar rats. J Biol Sci 7:89–92

    Article  Google Scholar 

  61. Carvalho PTC, Silva IS, Reis FA, Perreira DM, Aydos RD (2010) Influence of InGaAlP (660 nm) on the healing of skin wounds in diabetic rats. Acta Cir Bras 25:71–79

    Article  Google Scholar 

  62. de Moraes JM, de Oliveira E, Mendonça D, Moura VB, Oliveira MA, Afonso CL, Vinaud MC, Bachion MM, De Souza Lino R Jr (2013) Anti-inflammatory effect of low-intensity laser on the healing of third-degree burn wounds in rats. Lasers Med Sci 28:1169–1176

    Article  PubMed  Google Scholar 

  63. Rege A, Murari K, Seifert A, Pathak AP, Thakor NV (2011) Multiexposure laser speckle contrast imaging of the angiogenic microenvironment. J Biomed Opt 165:056006

    Article  Google Scholar 

  64. de Sousa APC, Paraguassú GM, Silveira NTT, Souza J, Cangussú MCT, Santos JN, Pinheiro ALB (2013) Laser and LED phototherapies on angiogenesis. Lasers Med Sci 28:981–987

    Article  PubMed  Google Scholar 

  65. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  66. Rocha Junior AM, Andrade LCF, Oliveira RG, Aerestrup FM, Farias RE (2006) Modulação da proliferação fibroblástica e da resposta inflamatória pela terapia a laser de baixa intensidade no processo de reparo tecidual. An Bras Dermatol 81:150–156

    Article  Google Scholar 

  67. Medrado A, Soares E, Santos S, Reis S, Andrade Z (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92:144–152

    Article  CAS  PubMed  Google Scholar 

  68. Tamura ED, Jimenez RS, Waismam K, Gobbo-Neto L, Lopes NP, Malpezzi-Marinho EAV, Farsky SHP (2009) Inhibitory effects of Solidago chilensis Meyen hydroalcoholic extract on acute inflammation. J Ethnopharmacol 122:478–485

    Article  PubMed  Google Scholar 

  69. Liz R, Vigil SV, Goulart S, Moritz MI, Schenkel EP, Fröde TS (2008) The anti-inflammatory modulatory role of Solidago chilensis Meyen in the murine model of the air pouch. J Pharm Pharmacol 60:515–521

    Article  CAS  PubMed  Google Scholar 

  70. Atkins S, Smith KG, Loescher AR, Boissonade FM, Ferguson MW, Robinson PP (2006) The effect of antibodies to TGFβ1 and TGFβ2 at a site of sciatic nerve repair. J Peripher Nerv Syst 11:286–293

    Article  CAS  PubMed  Google Scholar 

  71. Bitto A, Minutoli L, Altavilla D, Polito F, Fiumara T, Marini H, Galeano M, Calò M, Lo Cascio P, Bonaiuto M, Migliorato A, Caputi AP, Squadrito F (2008) Simvastatin enhances VEGF production and ameliorates impaired wound healing in experimental diabetes. Pharmacol Res 57:159–169

    Article  CAS  PubMed  Google Scholar 

  72. Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125

    Article  CAS  PubMed  Google Scholar 

  73. Rafael L, Teresinha N, Moritz JC, Maria IG, Eduardo MD, Tania SF (2009) Evaluation of antimicrobial and antiplatelet aggregation effects of Solidago chilensis Meyen. Int J Green Pharm 3:35–39

    Article  Google Scholar 

  74. Pedroso R, Silva CP, Furlan CM (2009) Comparison of major chemicals constituents in two species of Arnica: Cravorana (Porophyllum ruderale [Jacq.] Cass) and varão-de-ouro (Solidago sp). Rev Bras Cienc Saúde 22:42–49

    Google Scholar 

  75. Santin JR, Lemos M, Klein Júnior LC, Niero R, de Andrade SF (2010) Antiulcer effects of Achyrocline satureoides (Lam.) DC (Asteraceae) (Marcela), a folk medicine plant, in different experimental models. J Ethnopharmacol 130:334–339

    Article  PubMed  Google Scholar 

  76. Klaas CA, Wagner G, Laufer S, Sosa S, Della Loggia R, Bomme U, Pahl HL, Merfort I (2002) Studies on the anti-inflammatory activity of phytopharmaceuticals prepared from Arnica flowers. Planta Med 68:385–391

    Article  CAS  PubMed  Google Scholar 

  77. Hultman CS, Edkins RE, Lee CN, Calvert CT, Cairns BA (2012) Shine on: review of laser- and light-based therapies for the treatment of burn scars. Dermatol Res Pract 2012:243651

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Herminio Ometto University Center (UNIARARAS) (Araras, São Paulo, Brazil).

Conflict of interest

No conflicting interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Aparecida Sampaio Mendonça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catarino, H.R.C., de Godoy, N.P., Scharlack, N.K. et al. InGaP 670-nm laser therapy combined with a hydroalcoholic extract of Solidago chilensis Meyen in burn injuries. Lasers Med Sci 30, 1069–1079 (2015). https://doi.org/10.1007/s10103-014-1707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1707-0

Keywords

Navigation