Skip to main content

Advertisement

Log in

Laser and LED phototherapies on angiogenesis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Angiogenesis is a key process for wound healing. There are few reports of LED phototherapy on angiogenesis, mainly in vivo. The aim of the present investigation was to evaluate histologically the angiogenesis on dorsal cutaneous wounds treated with laser (660 and 790 nm) or LEDs (700, 530, and 460 nm) in a rodent model. Twenty-four young adult male Wistar rats weighting between 200 and 250 g were used on the present study. Under general anesthesia, one excisional wound was created on the dorsum of each animal that were then randomly distributed into six groups with four animals each: G0—control; G1—laser λ660 nm (60 mW, ϕ ∼2 mm, 10 J/cm2); G2—laser λ790 nm (50 mW, ϕ ∼2 mm, 10 J/cm2); G3—LED λ700 ± 20 nm (15 mW, ϕ ∼16 mm, 10 J/cm2); G4—LED λ530 ± 20 nm (8 mW, ϕ ∼16 mm, 10 J/cm2); G5—LED λ460 ± 20 nm (22 mW, ϕ ∼16 mm, 10 J/cm2). Irradiation started immediately after surgery and was repeated every other day for 7 days. Animal death occurred at the eighth day after surgery. The specimens were removed, routinely processed to wax, cut and stained with HE. Angiogenesis was scored by blood vessel counting in the wounded area. Quantitative results showed that green LED (λ530 ± 20 nm), red LED (λ700 ± 20 nm), λ790 nm laser and λ660 nm laser caused significant increased angiogenesis when compared to the control group. It is concluded that both laser and LED light are capable of stimulating angiogenesis in vivo on cutaneous wounds and that coherence was not decisive on the outcome of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Ketamine chloridrate—Vetaset® (60 mg/kg), Fort Dodge Animal Health, Campinas, SP, Brazil—and xylazine—Coopazine® (10 mg/kg), Intervet Schering-Plough, São Paulo, SP, Brazil

  2. Power Meter Thorlabs PM30-121, Thorlabs GmbH, Munich, Germany

References

  1. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  PubMed  CAS  Google Scholar 

  2. Mackay D, Miller AL (2003) Nutritional support for wound healing. Altern Med Rev 8:359–363

    PubMed  Google Scholar 

  3. Kumar V, Abbas AK, Fausto N (2004) Robbins and Cotran pathologic basis of disease, 7th edn. Elsevier, Philadelphia

    Google Scholar 

  4. Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27:427–437

    Article  PubMed  CAS  Google Scholar 

  5. Schindl M, Kerschan K, Schindl A, Schön H, Heinzl H, Schindl L (1999) Induction of complete wound healing in recalcitrant ulcers by low-intensity laser irradiation depends on ulcer cause and size. Photodermatol Photoimmunol Photomed 15:18–21

    Article  PubMed  CAS  Google Scholar 

  6. Schindl A, Schindl M, Schön H, Knobler R, Havelec L, Schindl L (1998) Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care 21:580–584

    Article  PubMed  CAS  Google Scholar 

  7. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314

    Article  PubMed  Google Scholar 

  8. Biondo-Simões ML, Ioshii SO, Borsato KS, Zimmermann E (2005) The healing process influenced by hypothyroidism and by elderly: study of abdominal wall healing in rats. Acta Circ Bras 20:211–219

    Google Scholar 

  9. Hildebrand KA, Gallant-Behm CL, Kydd AS, Hart DA (2005) The basics of soft tissue healing and general factors that influence such healing. Sports Med Arthroscl 13:136–144

    Article  Google Scholar 

  10. Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K (2005) Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscl Thromb Vasc Biol 25:1603–1609

    Article  PubMed  CAS  Google Scholar 

  11. Whelan HT, Smits RL, Buchman EV et al (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19:305–314

    Article  PubMed  CAS  Google Scholar 

  12. Tachiara R, Farinelli WA, Rox Anderson R (2002) Low intensity light-induced vasodilation in vivo. Lasers Surg Med Suppl 14:11

    Google Scholar 

  13. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  14. Lanzafame RJ, Stadler I, Whelan HT (2002) NASA LED photoradiation influences nitric oxide and collagen production in wounded rats. Lasers Surg Med Suppl 14:12

    Google Scholar 

  15. Sousa AP, Santos JN, Reis Júnior JA et al (2010) Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 28:547–552

    Article  PubMed  Google Scholar 

  16. Ihsan FRM (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23:289–294

    Article  PubMed  CAS  Google Scholar 

  17. Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148:334–336

    Article  PubMed  CAS  Google Scholar 

  18. Mirsky N, Krispel Y, Shoshany Y, Maltz L, Oron U (2002) Promotion of angiogenesis by low energy laser irradiation. Antioxid Redox Signal 4:785–790

    Article  PubMed  CAS  Google Scholar 

  19. Kipshidze N, Nikolaychik V, Keelan MH (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364

    Article  PubMed  CAS  Google Scholar 

  20. Tuby H, Maltz L, Oron U (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med 38:682–688

    Article  PubMed  Google Scholar 

  21. Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and enos gene expression possibly via PI3K signal pathway. Lasers Surg Med 40:46–54

    Article  PubMed  Google Scholar 

  22. Fukumura D, Jain RK (1998) Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev 17:77–89

    Article  PubMed  CAS  Google Scholar 

  23. Duda DG, Fukumura D, Jain RK (2004) Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med 10:143–145

    Article  PubMed  CAS  Google Scholar 

  24. Lindgård A, Hultén LM, Svensson L, Soussi B (2007) Irradiation at 634 nm releases nitric oxide from human monocytes. Lasers Med Sci 22:30–36

    Article  PubMed  Google Scholar 

  25. Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD (1992) Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 267:14519–14522

    PubMed  CAS  Google Scholar 

  26. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinas. Nature 407:538–541

    Article  PubMed  CAS  Google Scholar 

  27. Zhang R, Mio Y, Pratt PF et al (2009) Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol 46:4–14

    Article  PubMed  CAS  Google Scholar 

  28. Lim WB, Kim JS, Ko YJ et al (2011) Effects of 635 nm light-emitting diode irradiation on angiogenesis in CoCl(2)-exposed HUVECs. Lasers Surg Med 43:344–352

    Article  PubMed  Google Scholar 

  29. Fushimi T, Inui S, Nakajima T et al (2012) Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound Repair Regen 20(2):226–235

    Article  PubMed  Google Scholar 

  30. Machneva TV, Protopopov DM, Vladimirov IA et al (2008) A study of the effect of low-intensity laser radiation of the blue, green, and red spectral regions on the healing of experimental skin wounds in rats. Biofizika 53(5):894–901

    PubMed  CAS  Google Scholar 

  31. Adamskaya N, Dungel P, Mittermayr R et al (2011) Light therapy by blue LED improves wound healing in an excision model in rats. Injury 42(9):917–921

    Article  PubMed  Google Scholar 

  32. Karu TI (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17

    Article  PubMed  CAS  Google Scholar 

  33. Enwemeka CS (2006) The place of coherence in light induced tissue repair and pain modulation. Photomed Laser Surg 24:457

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support and PhD grant.

Disclosure

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luiz Barbosa Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Sousa, A.P.C., Paraguassú, G.M., Silveira, N.T.T. et al. Laser and LED phototherapies on angiogenesis. Lasers Med Sci 28, 981–987 (2013). https://doi.org/10.1007/s10103-012-1187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1187-z

Keywords

Navigation