Skip to main content

Advertisement

Log in

The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Gut microbiota consists of 1010 bacteria per gram of stool. Many antibiotic regimens induce a reduction in both the diversity and the abundance of the gut flora. We analyzed one stool sample collected from a patient treated for drug-resistant Mycobacterium tuberculosis and who ultimately died from pneumonia due to a Streptococcus pneumoniae 10 months later. We performed microscopic observation, used 70 culture conditions (microbial culturomics) with identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and 16S rRNA amplification and sequencing, pyrosequencing, and 18S rRNA amplification and clone sequencing. Electron and optical microscopic observations revealed the presence of yeast, but no bacterial species were observed. By culture, only 39 bacterial species were identified, including one new species, as well as three species that have not been previously observed in the human gut. The pyrosequencing showed only 18 phylotypes, detecting a lower number of bacterial species than the culture techniques. Only two phylotypes overlapped with culturomics. In contrast, an amount of chloroplasts was found. Additionally, specific molecular eukaryote detection found three fungal species. We recovered, for the first time, more cultivable than non-cultivable bacterial species in a patient with a low bacterial load in the gut, demonstrating the depth bias of pyrosequencing. We propose that the desertification of gut microbiota in this patient is a reflection of the total body microbiota and may have contributed to the invasive infection of S. pneumoniae. This finding suggests that caution should be applied when treating patients with broad-spectrum antibiotics, and preventive measures should be taken in order to avoid invasive infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raoult D (2012) Editorial. Clin Microbiol Infect 18(Suppl 4):1

    Article  PubMed  Google Scholar 

  2. Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469

    PubMed  CAS  Google Scholar 

  3. Robinson CJ, Young VB (2010) Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 1:279–284

    Article  PubMed  Google Scholar 

  4. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  PubMed  Google Scholar 

  5. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375

    Article  PubMed  CAS  Google Scholar 

  6. Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581

    Article  PubMed  CAS  Google Scholar 

  7. Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114

    Article  PubMed  CAS  Google Scholar 

  8. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108:4554–4561

    Article  PubMed  CAS  Google Scholar 

  9. Finegold SM, Sutter VL, Sugihara PT, Elder HA, Lehmann SM, Phillips RL (1977) Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 30:1781–1792

    PubMed  CAS  Google Scholar 

  10. Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    PubMed  CAS  Google Scholar 

  11. Moore WE, Holdeman LV (1974) Special problems associated with the isolation and identification of intestinal bacteria in fecal flora studies. Am J Clin Nutr 27:1450–1455

    PubMed  CAS  Google Scholar 

  12. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  13. Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian F, Raoult D (2012) High-level colonization of the human gut by Verrucomicrobia after broad-spectrum antibiotic treatment. Int J Antimicrob Agents (in press)

  14. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. doi:10.1111/1469-0691.12023

    PubMed  CAS  Google Scholar 

  15. Mishra AK, Gimenez G, Lagier JC, Robert C, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Alistipes senegalensis sp. nov. Stand Genomic Sci 6:304–314

    Article  CAS  Google Scholar 

  16. Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, Fournier PE (2012) Non contiguous-finished genome sequence and description of Bacillus timonensis sp. nov. Stand Genomic Sci 6:346–355

    Article  PubMed  CAS  Google Scholar 

  17. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov. Stand Genomic Sci 6:386–395

    PubMed  CAS  Google Scholar 

  18. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE (2012) Non contiguous-finished genome sequence and description of Peptoniphilus timonensis sp. nov. Stand Genomic Sci 7(1). doi:10.4056/sigs.2956294

  19. Mishra AK, Lagier JC, Rivet R, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand Genomic Sci 7(1). doi:10.4056/sigs.3056450

  20. Lagier JC, Armougom F, Mishra AK, Nguyen TT, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand Genomic Sci 6:315–324

    PubMed  CAS  Google Scholar 

  21. Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci 6:116–125

    Article  PubMed  CAS  Google Scholar 

  22. Silva JM, Fuchs SC, Barcellos NT, Zavascki AP (2009) Treatment of extensively drug-resistant tuberculosis. Lancet 373:27–28

    Article  PubMed  Google Scholar 

  23. García-Suárez MM, Cron LE, Suárez-Alvarez B, Villaverde R, González-Rodríguez I, Vázquez F, Hermans PW, Méndez FJ (2009) Diagnostic detection of Streptococcus pneumoniae PpmA in urine. Clin Microbiol Infect 15:443–453

    Article  PubMed  Google Scholar 

  24. Carvalho Mda G, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW, Steigerwalt A, Whaley M, Facklam RR, Fields B, Carlone G, Ades EW, Dagan R, Sampson JS (2007) Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol 45:2460–2466

    Article  CAS  Google Scholar 

  25. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  PubMed  CAS  Google Scholar 

  26. Zoetendal EG, Booijink CC, Klaassens ES, Heilig HG, Kleerebezem M, Smidt H, de Vos WM (2006) Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1:954–959

    Article  PubMed  CAS  Google Scholar 

  27. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  28. Giongo A, Davis-Richardson AG, Crab DB, Triplett EW (2010) TaxCollector: modifying current 16S rRNA databases for the rapid classification at six taxonomic levels. Diversity 2:1015–1025

    Article  CAS  Google Scholar 

  29. El Khéchine A, Henry M, Raoult D, Drancourt M (2009) Detection of Mycobacterium tuberculosis complex organisms in the stools of patients with pulmonary tuberculosis. Microbiology 155:2384–2389

    Article  PubMed  Google Scholar 

  30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  31. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200

    Article  PubMed  Google Scholar 

  32. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107:7503–7508

    Article  PubMed  CAS  Google Scholar 

  33. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652

    Article  PubMed  Google Scholar 

  34. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129:434–440

    Article  PubMed  Google Scholar 

  35. Preisler HD, Goldstein IM, Henderson ES (1970) Gastrointestinal “sterilization” in the treatment of patients with acute leukemia. Cancer 26:1076–1081

    Article  PubMed  CAS  Google Scholar 

  36. Bremer K, Wanntorp HE (1981) A cladistic classification of green plants. Nord J Bot 1:1–3

    Article  Google Scholar 

  37. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  PubMed  Google Scholar 

  38. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320

    Article  Google Scholar 

  39. Knights D, Costello EK, Knight R (2011) Supervised classification of human microbiota. FEMS Microbiol Rev 35:343–359

    Article  PubMed  CAS  Google Scholar 

  40. Bousbia S, Papazian L, La Scola B, Raoult D (2010) Detection of plant DNA in the bronchoalveolar lavage of patients with ventilator-associated pneumonia. PLoS One 5:e11298

    Article  PubMed  Google Scholar 

  41. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  PubMed  CAS  Google Scholar 

  42. Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, Herman D, Wang M, Donovan SM, Chapkin RS (2012) A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 13:r32

    Article  PubMed  CAS  Google Scholar 

  43. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 108:5354–5359

    Article  PubMed  CAS  Google Scholar 

  44. Licciardi PV, Toh ZQ, Dunne E, Wong SS, Mulholland EK, Tang M, Robins-Browne RM, Satzke C (2012) Protecting against pneumococcal disease: critical interactions between probiotics and the airway microbiome. PLoS Pathog 8:e1002652

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raoult.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubourg, G., Lagier, J.C., Armougom, F. et al. The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 32, 637–645 (2013). https://doi.org/10.1007/s10096-012-1787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1787-3

Keywords

Navigation