Skip to main content
Log in

Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourus detection

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Pyrazine compounds in Chinese liquors are one of the most important factors that affect the flavor. However, only limited information is available regarding pyrazine compounds in Chinese liquors. An analytical method for pyrazine compounds (9 pyrazines) was developed using head space solid phase microextraction (HS-SMPE) and gas chromatography with nitrogen-phosphorus detection (GC-NPD). Pyrazine compounds in different types of Chinese liquors collected from different plants were also evaluated and compared by the methods devised in this study. The linearity and recovery with this method were satisfactory in all test cases. Quantitative results revealed that concentrations of 7 pyrazines were higher in the liquors from King’s Luck than from other plants. Further research is needed on the mechanism responsible for high concentrations of pyrazine compounds in Chinese liquors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swiegers J, Bartowsky EJ, Henschke P, Pretorius IS. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape. Wine. R. 11: 139–173 (2005)

    Article  CAS  Google Scholar 

  2. Liao Y-H, Yang Ch-X, Hu J-Y. Comparison of aroma compounds in mild aromatic Niulanshan, erguotou liquor and strong aromatic Niulanshan liquor by GC-MS. Food Sci. 33: 181–185. (2012)

    CAS  Google Scholar 

  3. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Durán N. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem. 82: 409–416 (2003)

    Article  CAS  Google Scholar 

  4. Paixão N, Perestrelo R, Marques JC, Câmara JS. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem. 105: 204–214 (2007)

    Article  Google Scholar 

  5. Higasio YS, Shoji T. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol, and pyrazins. Appl. Catal. A-Gen. 221: 197–207 (2001)

    Article  CAS  Google Scholar 

  6. Maga JA, Katz I. Pyrazines in foods: An update. Crit. Rev. Food. Sci. 16: 1–48 (1982)

    CAS  Google Scholar 

  7. Jianping C. Pyrazines as important heterocyclic flavors special. Petrochem. 4: 44–47 (1994)

    Google Scholar 

  8. Liao SL, Kao TK, Chen WY, Lin YS, Chen SY, Raung SL, Wu CW, Lu HC, Chen CJ. Tetramethylpyrazine reduces ischemic brain injury in rats. Neurosci. Lett. 372: 40–45 (2004)

    Article  CAS  Google Scholar 

  9. Ho W, Wen H, Lee C. Tetramethylpyrazine for treatment of experimentally induced stroke in Mongolian gerbils. Stroke 20: 96–99 (1989)

    Article  CAS  Google Scholar 

  10. Tsai TH, Liang CC. Pharmacokinetics of tetramethylpyrazine in rat blood and brain using microdialysis. Int. J. Pharmaceut. 216: 61–66 (2001)

    Article  CAS  Google Scholar 

  11. Fan W, Xu Y, Zhang Y. Characterization of pyrazines in some Chinese liquors and their approximate concentrations. J. Agr. Food Chem. 55: 9956–9962 (2007)

    Article  CAS  Google Scholar 

  12. Lojzova L, Riddellova K, Hajslova J, Zrostlikova J, Schurek J, Cajka T. Alternative GC-MS approaches in the analysis of substituted pyrazines and other volatile aromatic compounds formed during Maillard reaction in potato chips. Anal. Chim. Acta 641: 101–109 (2009)

    Article  CAS  Google Scholar 

  13. Wang L, Wu J, Lei L. Fast detection of four pyrazines in Chinese liquor by GC-MS/SIM. Chin. Brew. 204: 148–150 (2009)

    Google Scholar 

  14. Alberts P, Stander MA, Paul SO, de Villiers A. Survey of 3-alkyl-2-methoxypyrazine content of South African sauvignon blanc wines using a novel LCAPCI-MS/MS Method. J. Agr. Food Chem. 57: 9347–9355 (2009)

    Article  CAS  Google Scholar 

  15. Li J, Wang D. Determination of nitrogenous compound in liquor by SPME-GC-MS-SIM. Liquor-Making. Sci. Technol. 195: 89–92 (2010)

    Google Scholar 

  16. Galvan TL, Kells S, Hutchison WD. Determination of 3-alkyl-2-methoxypyrazines in lady beetle-infested wine by solid-phase microextraction headspace sampling. J. Agr. Food Chem. 56: 1065–1071 (2008)

    Article  CAS  Google Scholar 

  17. Wardencki W, Sowinski P, Curylo J. Evaluation of headspace solidphase microextraction for the analysis of volatile carbonyl compounds in spirits and alcoholic beverages. J. Chromatogr. A 984: 89–96 (2003)

    Article  CAS  Google Scholar 

  18. Sala C, Mestres M, Martı M, Busto O, Guasch J. Headspace solidphase microextraction method for determining 3-alkyl-2-methoxypyrazines in musts by means of polydimethylsiloxane-divinylbenzene fibres. J. Chromatogr. A 880: 93–99 (2000)

    Article  CAS  Google Scholar 

  19. Sala C, Mestres M, Martý M, Busto O, Guasch J. Headspace solidphase microextraction analysis of 3-alkyl-2-methoxypyrazines in wines. J. Chromatogr. A 953: 1–6 (2002)

    Article  CAS  Google Scholar 

  20. Müller R, Rappert S. Pyrazines: occurrence, formation and biodegradation. Appl. Microbiol. Biotechnol. 85: 1315–1320 (2010)

    Article  Google Scholar 

  21. Sala C, Busto O, Guascha J, Zamora F. Factors affecting the presence of 3-alkyl-2-methoxypyrazines in grapes and wines: A review. Available from: http://www.tdx.cat/bitstream/handle/10803/8653/15-PaperC2.pdf?sequence=15. Accessed 2012.

  22. Buttery RG, Orts WJ, Takeoka GR, Nam Y. Volatile flavor components of rice cakes. J. Agr. Food Chem. 47: 4353–4356 (1999)

    Article  CAS  Google Scholar 

  23. Oh YC, Hartman TG, Ho CT. Volatile compounds generated from the Maillard reaction of Pro-Gly, Gly-Pro, and a mixture of glycine and proline with glucose. J. Agr. Food Chem. 40: 1878–1880 (1992)

    Article  CAS  Google Scholar 

  24. Wagner R, Czerny M, Bielohradsky J, Grosch W. Structure-odouractivity relationships of alkylpyrazines. Z. Lebensm-Wiss. Technol. 208: 308–316 (1999)

    Article  CAS  Google Scholar 

  25. Mihara S, Masuda H. Structure-odor relationships for disubstituted pyrazines. J. Agr. Food Chem. 36: 1242–1247 (1988)

    Article  CAS  Google Scholar 

  26. Fan W, Qian MC. Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J. Agr. Food Chem. 54: 2695–2704 (2006)

    Article  CAS  Google Scholar 

  27. Qian M, Reineccius G. Static headspace and aroma extract dilution analysis of Parmigiano Reggiano cheese. J. Food Sci. 68: 794–798 (2003)

    Article  CAS  Google Scholar 

  28. Counet C, Callemien D, Ouwerx C, Collin S. Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching. J. Agr. Food Chem. 50: 2385–2391 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JF., Xu, Y. Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourus detection. Food Sci Biotechnol 22, 1–6 (2013). https://doi.org/10.1007/s10068-013-0209-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0209-3

Keywords

Navigation