Skip to main content
Log in

Stress generated by the freeze–thaw process in open cracks of rock walls: empirical model for tight limestone

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In mountainous areas, freezing is a prominent phenomenon for weathering processes in rock walls. A freezing front penetrates rock crack networks and causes its propagation. To study the evolution of rock mass stability, a suitable model of stress generated by freezing in open rock cracks is needed. This stress evaluated by the simple volume expansion model in a closed crack is too high to be realistic. In this paper, we present an assessment method for this stress and some results. Different experiments on notched limestone specimens submitted to freeze–thaw cycles were performed. Three different tight limestones (Larrys, Chamesson, Pierre de Lens) were tested. Actually, the stress generated by freezing begins to grow at the top of the notch where an ice plug is created and makes it possible for higher stresses to develop in deeper parts of the notch. Consequently, the stress induced by freezing depends on the geometry of the open crack represented by the notch. This value is, however, limited by the permeability of the surrounding rock matrix. A model of the stress evolution generated by freezing along an open crack was established and its envelope curve, named maximum stress, was parameterized. This maximum stress generated by freezing along the crack is completely defined by knowledge of the pore network of the limestone matrix and the geometry of the crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • AFNOR (1973) NF B10-504. French Standard: Quarry products—Limestones—Measurement of the coefficient of water absorption

  • Akyurt M, Zaki G, Habeebullah B (2002) Freezing phenomena in ice-water systems. Energy Convers Manag 43:1773–1789. doi:10.1016/S0196-8904(01)00129-7

    Article  Google Scholar 

  • Amitrano D, Arattano M, Chiarle M, Mortara G, Occhiena C, Pirulli M, Scavia C (2010) Microseismic activity analysis for the study of the rupture mechanisms in unstable rock masses. Nat Hazards Earth Sci 10:831–841

    Article  Google Scholar 

  • Amitrano D, Gruber S, Girard L (2012) Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall. Earth Planet Sci Lett 341–344:86–93. doi:10.1016/j.epsl.2012.06.014

    Article  Google Scholar 

  • Berthier R (1958) La physique du gel. Bull RILEM 40:7–21

    Google Scholar 

  • Bost M (2008) Altération par le gel des massifs rocheux: Etude expérimentale et modélisation des mécanismes de génération des contraintes dans les fissures. Dissertation, Ecole Nationale des Ponts et Chaussées

  • Bourgeois E, Mestat Ph, Pucheu M (2012) CESAR-LCPC Abridged theoretical manual. Ifsttar-Itech. http://www.itech-soft.com/cesar/download/en/CESAR-MU%28AbTh%29-v2.0-GB.pdf. Accessed 01 Apr 2016

  • Bousquié P (1979) Texture et porosité de roches calcaires. Relations avec la perméabilité, L’ascension capillaire, la gélivité, la conductivité thermique. Dissertation, University of Pierre et Marie Curie, Paris VI

  • Bridgman PW (1912) Water, in the liquid and five solid forms, under pressure. Proc Am Acad Arts Sci 47:441–558

    Article  Google Scholar 

  • Chen TC, Mori N, Suzuki T, Shoji H, Goto T (2000) Experimental study on crack development pf rock specimens by freezing and thawing cycles. Soils Found 40(2):41–48

    Article  Google Scholar 

  • Clark M, Small J (1982) Slopes and weathering. Cambridge topics in geography, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Davies MCR, Hamza O, Harris C (2001) The effect of rise in mean annual temperatures on the stability of rock slopes containing ice-filled discontinuities. Permafr Periglac Process 12:137–144. doi:10.1002/ppp.378

    Article  Google Scholar 

  • De Kock T, Boone MA, De Schryver T, Van Stappen J, Derluyn H, Masschaele B, De Schutter G, Cnudde V (2015) A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling. Environ Sci Technol 49(5):2867–2874. doi:10.1021/es505738d

    Article  Google Scholar 

  • Derruau M (1996) Les formes du relief terrestre. Notion de géomorphologie, 8th edn. Armand Colin Publisher, Paris

    Google Scholar 

  • Djaballah Masmoudi N (1998) Modélisation et expérimentation de la perméabilité et des mécanismes de transfert dans les milieux poreux au cours du gel. Dissertation, University of Pierre et Marie Curie, Paris VI

  • Draebing D, Krautblatter M, Dikau R (2014) Interaction of thermal and mechanical processes in steep permafrost rock walls: a conceptual approach. Geomorphology. doi:10.1016/j.geomorph.2014.08.009

    Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A 241:376–396. doi:10.1098/rspa.1957.0133

    Article  Google Scholar 

  • Everett DH (1961) Thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:1541–1551. doi:10.1039/TF9615701541

    Article  Google Scholar 

  • Fahey BD, Lefebure TH (1988) The freeze-thaw weathering regime at a section of the Niagara escarpment on the Bruce Peninsula, Southern Ontario, Canada. Earth Surf Process Landf 13:293–304. doi:10.1002/esp.3290130403

    Article  Google Scholar 

  • Frayssines M (2005) Contribution à l’évaluation de l’aléa éboulement rocheux (rupture). Dissertation, University of Joseph Fourier, Grenoble

  • Frayssines M, Hantz D (2006) Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps). Eng Geol 86:256–270. doi:10.1016/j.enggeo.2006.05.009

    Article  Google Scholar 

  • Frayssines M, Hantz D (2009) Modelling and back analysing failures in steep limestone cliffs. Int J Rock Mech Min Sci 46:1115–1123. doi:10.1016/j.ijrmms.2009.06.003

    Article  Google Scholar 

  • Freire-Lista DM, Fort R, Varas-Muriel ML (2015) Freeze-thaw fracturing in building granites. Cold Reg Sci Technol 113:40–51. doi:10.1016/j.coldregions.2015.01.008

    Article  Google Scholar 

  • Groupe Falaise (2001) Prévention des mouvements de versants et des instabilités de falaises. Confrontation des méthodes d’étude des éboulements rocheux dans l’arc alpin. Programme Interreg IIC-Falaises Méditerranée Occidentale et Alpes Latines

  • Hall K (1986) The utilization of the stress intensity factor (KIC) in a model for rock fracture during freezing: an example from Signy Island, the maritime Antarctic. Br Antarct Surv Bull 72:53–60 ( http://web.archive.org/web/20150708051850/http://www.antarctica.ac.uk/documents/bas_bulletins/bulletin72_06.pdf )

    Google Scholar 

  • Hirschwald J (1912) Handbuch der bautechnischen gesteinsprüfung. Borntraeger, Berlin

    Google Scholar 

  • Huygens C (1666) Effet du froid sur l’eau renfermée dans un canon de pistolet. Volume de l’Académie Royale des sciences de Paris

  • Ishikawa M, Kurashige Y, Hirakawa K (2004) Analysis of crack movements observed in an alpine bedrock cliff. Earth Surf Process Landf 28:883–891. doi:10.1002/esp.1076

    Article  Google Scholar 

  • Iskandar A (1990) Caractérisation de l’espace poreux de roches sédimentaires par l’étude d’équilibres capillaires. Dissertation, Ecole Nationale des Ponts et Chaussée, Paris

  • Javey C (1972) L’altération des roches et des monuments. Étude documentaire, Bull. BRGM 3(1):39–66

    Google Scholar 

  • Krautblatter M, Funk D, Gunzel FK (2013) Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space. Earth surf Process Landf 38:876–887. doi:10.1002/esp.3374

    Article  Google Scholar 

  • Letavernier G (1984) La gélivité des roches calcaires. Relations avec la morphologie du milieu poreux. Dissertation, University of Caen

  • Lévy C, Baillet L, Jongmans D, Mourot P, Hantz D (2010) Dynamic response of the Chamousset rock column (Western Alps, France). J Geophys Res. doi:10.1029/2009JF001606

    Google Scholar 

  • Litvan GG (1978) Freeze-thaw durability of porous building materials. Durability of building materials and Components. ASTM Spec Tech Publ 691:455–463

    Google Scholar 

  • Lliboutry L (1964) Traité de glaciologie: Glaciers, variations du climat, sols gelés, vol 2. Masson & cie Publishers, Paris

    Google Scholar 

  • Mateos RM, Garcia-Moreno I, Azanon JM (2012) Freeze-thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region : the case of the Tramuntana range (Majorca, Spain). Landlsides 9:417–432. doi:10.1007/s10346-011-0290-8

    Google Scholar 

  • Matsuoka N (2001) Direct observation of frost wedging in alpine bedrock. Earth Surf Process Landf 26:601–614

    Article  Google Scholar 

  • Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994–2006) observations. Geomorphology 99:353–368. doi:10.1016/j.geomorph.2007.11.013

    Article  Google Scholar 

  • Matsuoka N, Murton J (2008) Frost weathering : recent advances and future directions. Permafr Periglac Process 19:195–210. doi:10.1002/ppp.620

    Article  Google Scholar 

  • Murton JB, Peterson R, Ozouf JC (2006) Bedrock fracture by ice segregation in cold regions. Science 314:1127–1129. doi:10.1126/science.1132127

    Article  Google Scholar 

  • Panet M (1976) La mécanique des roches appliquée aux ouvrages de génie civil. Ecole Nationale des Ponts et Chaussées Edition

  • Pellerin FM (1980) La porosimétrie au mercure appliquée à l’étude géotechnique des sols et des roches. Bull Liaison Labo P Et Ch 106:105–116

  • PIARC G2 (1999) Technical Committee 7.2 Natural Disaster Reduction. Natural Disaster Reduction for Roads—Final Report. ISBN 2-84060-109-5

  • Pouya A (1991) Comportement rhéologique du sel gemme. Application à l’étude des excavations souterraines. Dissertation, Ecole Nationale des Ponts et Chaussées

  • Powers TC (1949) The air requirement of frost-resistant concrete. Proc Highw Res Board 29:184–211

    Google Scholar 

  • Powers TC, Helmuth RA (1953) Theory of volume changes in hardened Portland cement paste during freezing. Proc Highw Res Board 32:285–297

    Google Scholar 

  • Prick A (1995) Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles. Catena 25:7–20

    Article  Google Scholar 

  • Salençon, J (2002) Mécanique des Milieux Continus, Editions de l’Ecole Polytechnique, France

  • Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Article  Google Scholar 

  • Teixeira J (2001) L’étrange comportement de l’eau ultra-froide. Pour la Sci 28:84–91

    Google Scholar 

  • Tharp TM (1987) Conditions for crack propagation by frost wedging. Geol Soc Am Bull 99:94–102

    Article  Google Scholar 

  • Valadas B (1975) Quelques résultats d’observations de terrain en matière de gélifraction actuelle dans le Massif Central français. VIth International Congress Les problèmes posés par la gélifraction. Recherches fondamentales et appliquées, rapport no 109, Fondation Française d’Etudes Nordiques: Le Havre

  • Walder J, Halet B (1985) A theoretical model of the fracture of rock during freezing. Geol Soc Am Bull 96:336–346

    Article  Google Scholar 

  • Wegmann M, Gudmundsson GH (1999) Thermally induced temporal strain variations in rock walls observed at subzero temperatures. In: Hutter K, Wang Y, Beer H (eds) Advances in cold region thermal engineering and sciences. Lecture Notes in Physics. Springer, Heidelberg, pp 511–518

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the group at the rock mechanics laboratory of IFSTTAR for its support in performing the numerous experiments of this study. We also thank the two anonymous reviewers whose suggestions have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Bost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bost, M., Pouya, A. Stress generated by the freeze–thaw process in open cracks of rock walls: empirical model for tight limestone. Bull Eng Geol Environ 76, 1491–1505 (2017). https://doi.org/10.1007/s10064-016-0955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0955-6

Keywords

Navigation