Skip to main content
Log in

Dispersion compensation in optical transmission systems using high negative dispersion chalcogenide/silica hybrid microstructured optical fiber

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, a new hybrid microstructured optical fiber (H-MOF) based upon photonic bandgap (PBG) light guiding mechanism which can be used for dispersion compensation in optical transmission systems is designed and simulated. The H-MOF core is made up of silica glass and the holes in the cladding network are filled with As2Se3 chalcogenide glass. By selecting an appropriate geometrical parameters for the structure, the dispersion and confinement losses of the proposed H-MOF at 1.55 µm are calculated to be −6700 ps/nm/km and 6 × 10−4 dB/m, respectively. Relative dispersion slope (RDS) of the H-MOF at 1.55 µm is about 0.00347 nm−1. The proposed H-MOF is suitable for use in wavelength division multiplexing and dispersion compensating systems in optical fiber transmission networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Selim Habib, M., Samiul Habib, M., Hasan, M.I., Razzak, S.M.A., Mahmud, R.R., Namihira, Y.: Microstructured holey fibers as wideband dispersion compensating media for high speed transmission system. Optik, 124, 4984–4988 (2013)

    Article  ADS  Google Scholar 

  2. Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Namihira, Y., Hossain, M.A., Goffar Khan, M.A.: Broadband dispersion compensation of conventional single mode fibers using microstructured optical fibers. Optik 124, 3851–3855 (2013)

    Article  ADS  Google Scholar 

  3. Hasan, M.I., Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20, 32–38 (2014)

    Article  ADS  Google Scholar 

  4. Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Anwar Hossain, M.: Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 12, 461–467 (2013)

    Article  ADS  Google Scholar 

  5. Singha, M., Sharma, A., Kaler, R.S.: Investigations on order and width of RZ super Gaussian pulse in pre-, post- and symmetrical-dispersion compensated 10 Gb/s optical communication system using standard and dispersion compensating fibers. Optik 121, 609–616 (2010).

    Article  ADS  Google Scholar 

  6. Haque, M.M., Rahman, M.S., Samiul Habib, M., Selim Habib, M., Razzak, S.M.A.: A new circular photonic crystal fiber for effective dispersion compensation over E to L wavelength bands. Microw. Optoelectron. Electromagn. Appl. 12, 2179–1074 (2013)

    Google Scholar 

  7. Begum, F., Namihira, Y., Abdur Razzak, S.M., Kaijage, S., Hoang Hai, N., Kinjo, T., Miyagi, K., Zou, N.: Novel broadband dispersion compensating photonic crystal fibers: applications in high-speed transmission systems. Opt. Laser Technol. 41, 679–686 (2009)

    Article  ADS  Google Scholar 

  8. Imran Hasan, M., Samiul Habib, M., Selim Habib, M., Abdur Razzak, S.M.: Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photon. Nanostruct. Fund. Appl. 12, 205–211 (2014)

    Article  ADS  Google Scholar 

  9. Liu, Y., Li, Y., Wang, J., Wang, R., Li, J., Xie, X.: A novel hybrid photonic crystal dispersion compensating fiber with multiple windows. Opt. Laser Technol. 44, 2076–2079 (2012)

    Article  ADS  Google Scholar 

  10. Begum, F., Namihira, Y., Abdur Razzak, S.M., Kaijage, S., Hoang Hai, N., Kinjo, T., Miyagi, K., Zou, N.: Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Opt. Commun. 282, 1416–1421 (2009)

    Article  ADS  Google Scholar 

  11. Seifouri, M., Olyaee, S., Dekamin, M.: Chalcogenide As2Se3 multi cladding microstructured optical fiber with high nonlinearity and flattened dispersion in mid-infrared range. IJTPE 6, 11–16 (2014)

    Google Scholar 

  12. El-Amraoui, M., Gadret, G., Jules, J.C., Fatome, J., Fortier, C., Desevedavy, F., Skripatchev, I., Messaddeq, Y., Troles, J., Brilland, L., Gao, W., Suzuki, T., Ohishi, Y., Smektala, F.: Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt. Express 18, 26655–26665 (2010)

    Article  ADS  Google Scholar 

  13. Toupin, P., Brilland, L., Renversez, G., Troles, J.: All-solid all-chalcogenide microstructured optical fiber. Opt. Express 21, 14643–14648 (2013)

    Article  ADS  Google Scholar 

  14. Kawashima, H., Kohoutek, T., Yan, X., Suzuki, T., Ohishi, Y.: Chalcogenide/tellurite hybrid microstructured optical fiber with high nonlinearity and flattened dispersion. Phys. Status Solidi C 9, 2621–2624 (2012)

    Article  ADS  Google Scholar 

  15. Suzuki, K., Hamachi, Y., Baba, T.: Fabrication and characterization of chalcogenide glass photonic crystal waveguides. Opt. Express 17, 22393–22400 (2009)

    Article  ADS  Google Scholar 

  16. Dabas, B., Sinha, R.K.: Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Opt. Commun. 283, 1331–1337 (2010)

    Article  ADS  Google Scholar 

  17. Conseil, C., Coulombier, Q., Boussard-Pledel, C., Troles, J., Brilland, L., Renversez, G., Mechin, D., Bureau, B., Adam, J.L., Lucas, J.: Chalcogenide step index and microstructured single mode fibers. Non-Cryst Solids 357, 2480–2483 (2011)

    Article  ADS  Google Scholar 

  18. Szpulak, M., Fevrier, S.: Chalcogenide As2S3, suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing. IEEE Photon. Technol. Lett. 21, 884–886 (2009)

    Article  ADS  Google Scholar 

  19. Cherif, R., Ben Salem, A., Zghal, M., Besnard, P., Chartier, T., Brilland, L., Troles, J.: Highly nonlinear As2Se3 based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Opt. Eng. 49, 095002–095008 (2010)

    Article  ADS  Google Scholar 

  20. Chaudhari, C., Liao, M., Suzuki, T., Ohishi, Y.: Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications. J. Lightwave Technol. 30, 2069–2076 (2012)

    Article  ADS  Google Scholar 

  21. Bureau, B., Boussard, C., Cui, S., Chahal, R., Laure Anne, M., Nazabal, V., Sire, O., Loréal, O., Lucas, P., Monbet, V., Louis Doualan, J., Camy, P., Tariel, H., Charpentier, F., Quetel, L., Luc Adam, J., Lucas, J.: Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng., 53, 027101–027108 (2014)

    Article  ADS  Google Scholar 

  22. Hey Tow, K., Leguillon, Y., Fresnel, S., Besnard, P., Brilland, L., Mechin, D, Toupin, P., Troles, J.: Towards more coherent sources using a microstructured chalcogenide brillouin fiber laser. IEEE Photon. Technol. Lett. 25, 238–241 (2012)

    Article  Google Scholar 

  23. Markos, C.: Photo-induced changes in a hybrid amorphous chalcogenide/silica Photonic crystal fiber. Appl. Phys. Lett. 104, 011114–011118 (2014)

    Article  ADS  Google Scholar 

  24. Granzow, N., Uebel, P., Schmidt, M.A., Tverjanovich, A.S., Wondraczek, L., Russell, P. St. J.: Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers. Opt. Lett. 36, 2432–2434 (2011)

    Article  ADS  Google Scholar 

  25. Cheng, T., Kawashima, H., Xue, X., Deng, D., Matsumoto, M., Misumi, M., Suzuki, T., Ohishi, Y.: Fabrication of a chalcogenide-tellurite hybrid microstructureo optical fiber for flattend and broadband supercontinuum generation. J. Lightwave Tech. 33(2), 333–338 (2015)

    Article  ADS  Google Scholar 

  26. Liao, M., Chauahari, C., Qin, G., Yan, X., Kito, C., Suzuki, T., Ohishi, Y., Matsumoto, M., Misumi, T.: Fabrication and characterization of a chalcogenide-tellurite composite microstructured fiber with high nonlinearity. J. Opt. Express 17, 21608–21614 (2009)

    Article  ADS  Google Scholar 

  27. Markos, C., Kubat, I., Bang, O.: Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. J. Sci. Rep. 4, 6057 (2014)

    Article  ADS  Google Scholar 

  28. Dabas, B., Sinha, R.K.: Design of highly birefringent chalcogenide glass PCF: a simplest design. Opt. Commun. 284, 1186–1191 (2010)

    Article  ADS  Google Scholar 

  29. Desevedavy, F., Renversez, G., Troles, J., Houizot, P., Brilland, L., Vasilief, I., Coulombier, Q., Traynor, N., Smektala, F., Luc Adam, J.: Chalcogenide glass hollow core photonic crystal fibers. Opt. Mater. 32, 1532–1539 (2010)

    Article  ADS  Google Scholar 

  30. Healy, N., Sparks, J.R., He, R.R., Sazio, P.J.A., Badding, J.V., Peacock, A.C.: High index contrast semiconductor ARROW and hybrid ARROW fibers. Opt. Express. 19, 10979–10985 (2011)

    Article  ADS  Google Scholar 

  31. White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., Martijn de Sterke, C., Botten, L.C.: Multipole method for microstructured optical fibers. I. Formulation. Opt. Soc. Am. 19, 2322–2330 (2002)

    Article  ADS  Google Scholar 

  32. Karami, R., Seifouri, M., Olyaee, S., Chitsazian, M., Alizadeh, M.R.: Numerical analysis of a circular chalcogenide/silica hybrid nanostructured photonic crystal fiber for the purpose of dispersion compensation. Int. J. Numer. Model. (2016). doi:10.1002/jnm.2184

    Google Scholar 

  33. Wei, W., Lan-Tian, H., Jun-Jie, S., Gui-Yao, Z.: Design of double cladding dispersion flattened photonic crystal fiber with deformation insensitive outer cladding air-holes. Opt. Commun. 282, 3468–3472 (2009)

    Article  ADS  Google Scholar 

  34. Seifouri, M., Olyaee, S., Dekamin, M.: A new circular chalcogenide/silica hybrid microstructured optical fiber with high negative dispersion for the purpose of dispersion compensation. J. Optik. 126(21), 3093–3098 (2015)

    Article  ADS  Google Scholar 

  35. Kato, T., Hirano, M., Fujii, T., Yokokawa, T., Yamamoto, Y., Onishi, M.: Design optimization of dispersion compensating fibers and their packaging techniques. Opt. Fiber Commun. Rep. 5, 86–109 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifouri, M., Olyaee, S., Dekamin, M. et al. Dispersion compensation in optical transmission systems using high negative dispersion chalcogenide/silica hybrid microstructured optical fiber. Opt Rev 24, 318–324 (2017). https://doi.org/10.1007/s10043-017-0322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0322-2

Keywords

Navigation