Skip to main content
Log in

Generation of the determined vectorial vortex beams by use of an achromatic axially symmetric waveplate

  • Special Section: Invited Review Paper
  • Optics Awards 2016 for excellent papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We review the generation of the determined vectorial vortex beams in the terahertz (THz) beams at frequencies of 0.16 and 0.36 THz, and intense middle infrared pulsed beam at 10.6 µm by use of an achromatic axially symmetric waveplate. It is possible for the method to decide the polarization states of incident beam with arbitrary polarization, and to determine the angular variant polarization after converting into vectorial vortex beams, instantaneously. This approach could apply to not only obtain the polarization states of the beams in the broadband spectral regions from ultraviolet to THz but also generate the determined vectorial vortex beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guh, S., Cheong, S.-W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004)

    Article  ADS  Google Scholar 

  2. Patterson, D., Schnell, M., Doyle, J.M.: Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 475, 475 (2013)

    Article  ADS  Google Scholar 

  3. Wiersema, K., Covino, S., Toma, K., van der Horst, A.J., Varela, K., Min, M., Greiner, J., R.L.C. Starling, Tanvir, N.R., R.A.M.J. Wijers, Campana, S., Curran, P.A., Fan, Y., J.P.U. Fynbo, Gorosabel, J., Gomboc, A., Gotz, D., Hjorth, J., Jin, Z.P., Kobayashi, S., Kouveliotou, C., Mundell, C., O’Brien, P.T., Pian, E., Rowlinson, A., Russell, D.M., Salvaterra, R., di Serego Alighieri, S., Tagliaferri, G., Vergani, S.D., Elliott, J., Farina, C., Hartoog, O.E., Karjalainen, R., Klose, S., Knust, F., Levan, A.J., Schady, P., Sudilovski, V., Willingale, R.: Circular polarization in the optical afterglow of GRB 121024A. Nature 509, 201 (2014)

    Article  ADS  Google Scholar 

  4. Henry, E.R., Hochstrasser, R.M.: Molecular dynamics simulations of fluorescence polarization of tryptophans in myoglobin. Proc. Natl. Acad. Sci. USA 84, 6142 (1987)

    Article  ADS  Google Scholar 

  5. Tang, Y., Cohen, A.E.: Enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333 (2011)

    Article  ADS  Google Scholar 

  6. Donné, A.J.H., Graswinckel, M.F., Cavinato, M., Giudicotti, L., Zilli, E., Gil, C., Koslowski, H.R., McCarthy, P., Nyhan, C., Prunty, S., Spillane, M., Walker, C.: Poloidal polarimeter for current density measurements in ITER. Rev. Sci. Instrum 75, 4694 (2004)

    Article  ADS  Google Scholar 

  7. Bonmarin, M., Helbing, J.: Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements. Chirality 21, E298 (2009)

    Article  Google Scholar 

  8. Eerdenbrugh, B.V., Taylor, L.S.: Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. Int. J. Pharm. 417, 3 (2011)

    Article  Google Scholar 

  9. Middleton, C.T., Strasfeld, D.B., Zanni, M.T.: Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy. Opt. Express. 17, 14526 (2009)

    Article  ADS  Google Scholar 

  10. Ahmed, M.A., Schulz, J., Voss, A., Parriaux, O., Pommier, J.-C., Graf, T.: Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror. Opt. Lett. 32, 1824 (2007)

    Article  ADS  Google Scholar 

  11. Endo, M.: Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator. Opt. Lett. 33, 1771 (2008)

    Article  ADS  Google Scholar 

  12. Serebryakov, V.A., Boĭko, É.V., Petrishchev, N.N., Yan, A.V.: Medical applications of mid-IR lasers. Problems and prospects. J. Opt. Technol. 77, 6 (2010)

    Article  Google Scholar 

  13. Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  14. Brixner, T., Krampert, G., Pfeifer, T., Selle, R., Gerber, G., Wollenhaupt, M., Graefe, O., Horn, C., Liese, D., Baumert, T.: Quantum control by ultrafast polarization shaping. Phys. Rev. Lett. 92, 208301 (2004)

    Article  ADS  Google Scholar 

  15. Sato, M., Higuchi, T., Kanda, N., Konishi, K., Yoshioka, K., Suzuki, T., Misawa, K., Kuwata-Gonokami M.: Terahertz polarization pulse shaping with arbitrary field control. Nat. Photon. 7, 724 (2013)

    Article  ADS  Google Scholar 

  16. Li, Z., Rupinski, S., Zetterberg, M., Alwahabi, Z.T., Aldén, M.: Mid-infrared polarization spectroscopy of polyatomic molecules: detection of nascent CO2 and H2O in atmospheric pressure flames. Chem. Phys. Lett. 407, 243 (2005)

    Article  ADS  Google Scholar 

  17. Kawasaki, T., Fujioka, J., Imai, T., Torigoe, K., Tsukiyama, K.: Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form. Lasers Med. Sci. 29, 1701 (2014)

    Article  Google Scholar 

  18. Kawasaki, T., Imai, T., Tsukiyama, K.: Use of a mid-infrared free-electron laser (MIR-FEL) for dissecting the amyloid fibril structure of a peptide. J. Anal. Sci. Methods Instrum. 4, 9 (2014)

    Google Scholar 

  19. Zhan, Q.: Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1 (2009)

    Article  Google Scholar 

  20. Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)

    Article  ADS  Google Scholar 

  21. Nanni, E.A., Haung, W.R., Hong, K.-H., Ravi, K., Fallashi, A., Moriena, G., Miller, R.J.D., Kärtner, F.X.: Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015)

    Article  Google Scholar 

  22. Miyamoto, K., Suizu, K., Akiba, T., Omatsu, T.: Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl. Phys. Lett. 104, 261104 (2014)

    Article  ADS  Google Scholar 

  23. Imai, R., Kanda, N., Higuchi, T., Konishi, K., Kuwata-Gonokami, M.: Generation of broadband terahertz vortex beams. Opt. Lett. 39, 3714 (2014)

    Article  ADS  Google Scholar 

  24. Xie, Z., Wang, X., Ye, J., Feng, S., Sun, W., Akalin, T., Zhang, Y.: Spatial terahertz modulator. Sci. Rep. 3, 3347 (2013)

    Article  ADS  Google Scholar 

  25. Milione, G., Sztul, H.I., Nolan, D.A., Alfano, R.R.: Higher-order poincaré sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011)

    Article  ADS  Google Scholar 

  26. Milione, G., Evans, S., Nolan, D.A., Alfano, R.R.: Higher order Pancharatnam–Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012)

    Article  ADS  Google Scholar 

  27. K.P. Singh, M. Kumar: Electron acceleration by a radially polarized laser pulse during ionization of low density gases. Phys. Rev. ST Accel. Beams 14, 030401 (2011)

    Article  ADS  Google Scholar 

  28. Donato, M.G., Vasi, S., Sayed, R., Jones, P.H., Bonaccorso, F., Ferrari, A.C., Gucciardi, P.G., Maragò, O.M.: Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett. 37, 3381 (2012)

    Article  ADS  Google Scholar 

  29. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994)

    Article  ADS  Google Scholar 

  30. Kozawa, Y., Hibi, T., Sato, A., Horanai, H., Kurihara, M., Hashimoto, N., Yokoyama, H., Nemoto, T. Sato, S.: Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam. Opt. Express. 19, 15947 (2011)

    Article  ADS  Google Scholar 

  31. Purnapatra, S.B., Bera, S., Mondal, P.P.: Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy. Sci. Rep. 2, 692 (2012)

    Article  ADS  Google Scholar 

  32. Zeng, J., Wang, X., Sun, J., Pandey, A., Cartwright, A.N., Litchinitser, N.M.: Manipulating complex light with metamaterials. Sci. Rep. 3, 2826 (2013)

    Article  ADS  Google Scholar 

  33. Kruk, S., Hopkins, B., Kravchenko, I.I., Miroshnichenko, A., Neshev, D.N., Kivshar, Y.S.: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 1, 030801 (2016)

    Article  ADS  Google Scholar 

  34. Ito, S., Yamauchi, H., Tamura, M., Hidaka, S., Hattori, H., Hamada, T., Nishida, K., Tokonami, S., Itoh, T., Miyasaka, H., Iida, T.: Selective optical assembly of highly uniform nanoparticles by doughnut-shaped beams. Sci. Rep. 3, 3047 (2013)

    Article  ADS  Google Scholar 

  35. Watanabe, M., Juman, G., Miyamoto, K., Omatsu, T.: Light induced conch-shaped relief in an azo-polymer film. Sci. Rep. 4, 4281 (2014)

    Article  ADS  Google Scholar 

  36. Toyoda, K., Miyamoto, K., Aoki, N., Morita, R., Omatsu, T.: Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645 (2012)

    Article  ADS  Google Scholar 

  37. Stalder, M., Schadt, M.: Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21, 1948 (1996)

    Article  ADS  Google Scholar 

  38. McEldowney, S.C., Shemo, D.M., Chipman, R.A., Smith, P.K.: Creating vortex retarders using photoaligned liquid crystal polymers. Opt. Lett. 33, 134 (2008)

    Article  ADS  Google Scholar 

  39. Beresna, M., Gecevičius, M., Kazansky, P.G., Gertus, T.: Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011)

    Article  ADS  Google Scholar 

  40. Niv, A., Biener, G., Kleiner, V., Hasman, E.: Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express. 14, 4208 (2006)

    Article  ADS  Google Scholar 

  41. Wakayama, T., Komaki, K., Otani, Y., Yoshizawa, T.: Achromatic axially symmetric wave plate. Opt. Express. 20, 29260 (2012)

    Article  ADS  Google Scholar 

  42. Wakayama, T., Higashiguchi, T., Oikawa, H., Sakaue, K., Washio, M., Yonemura, M., Yoshizawa, T., Tyo, J.S., Otani, Y.: Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis. Sci. Rep. 5, 9416 (2015)

    Article  ADS  Google Scholar 

  43. Wakayama, T., Rodríguez-Herrera, O.G., Tyo, J.S., Otani, Y., Yonemura, M., Yoshizawa, T.: Generation of achromatic, uniform-phase, radially polarized beams. Opt. Express. 22, 3306 (2014)

    Article  ADS  Google Scholar 

  44. Wakayama, T., Oikawa, H., Sasanuma, A., Arai, G., Fujii, Y., Dinh, T.H., Higashiguchi, T., Sakaue, K., Washio, M., Miura, T., Takahashi, A., Nakamura, D., Okada, T., Yonemura, M., Otani, Y.: Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate. Appl. Phys. Lett. 107, 081112 (2015)

    Article  ADS  Google Scholar 

  45. Wakayama, T., Higashiguchi, T., Otani, Y.: Passive control of a high-energy carbon dioxide-pulsed vectorial vortex beam. SPIE Newsroom (2016). doi:10.1117/2.1201512.006281

  46. Hornstein, M.K., Bajaj, S.V., Griffin, R.G., Temkin, R.J.: Continuous-wave operation of a 460-GHz second harmonic Gyrotron oscillator. IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 34, 524 (2006)

    Article  ADS  Google Scholar 

  47. Zaks, B., Liu, R.B., Sherwin, M.S.: Experimental observation of electron–hole recollisions. Nature 483, 580 (2012)

    Article  ADS  Google Scholar 

  48. Thangaraj, J.C.T., Thurman-Keup, R., Ruan, J., Johnson, A.S., Lumpkin, A.H., Santucci, J.: Experimental studies on coherent synchrotron radiation at an emittance exchange beam line. Phys. Rev. ST Accel. Beams 15, 110702 (2012)

    Article  ADS  Google Scholar 

  49. Ferrari, E., Allaria, E., Buck, J., De Ninno, G., Diviacco, B., Gauthier, D., Giannessi, L., Glaser, L., Huang, Z., Ilchen, M., Lambert, G., Lutman, A.A., Mahieu, B., Penco, G., Spezzani, C., Viefhaus, J.: Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators. Sci. Rep. 5, 13531 (2016)

    Article  ADS  Google Scholar 

  50. Mukai, Y., Hirori, H., Yamamoto, T., Kageyama, H., Tanaka, K.: Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field. New J. Phys. 18, 013045 (2016)

    Article  ADS  Google Scholar 

  51. Azzam, R.M.A., Bashara, N.M. (eds.): Ellipsometry and polarized light (1987)

  52. Oka, K., Kato, T.: Spectroscopic polarimetry with a channeled spectrum. Opt. Lett. 24, 1475 (1999)

    Article  ADS  Google Scholar 

  53. Morris, C.M., Aguilar, R.V., Stier, A.V., Armitage, N.P.: Polarization modulation time-domain terahertz polarimetry. Opt. Express. 20, 12303 (2012)

    Article  ADS  Google Scholar 

  54. Fresnel, A. : Mémoire sur les modifications que la réflexion imprime à la lumière polarisée. Mémoires de l’Académie des sciences de l’Institute de France 11, 373 (1832)

  55. Goldstein, D.H. (ed.): Polarized, light third edition. CRC Press, Boca Raton (2011)

Download references

Acknowledgements

We are grateful to our collaborators of this work who are Prof. Motoki Yonemura in Saitama Medical University, Mr. Hiroki Oikawa, Mr. Atsushi Sasanuma, Mr. Goki Arai, Mr. Yusuke Fujii, and Dr. Thanh-Hung Dinh in Utsunomiya University, Dr. Kazuyuki Sakaue and Prof. Masakazu Washio in Waseda University, Prof. Toru Yoshizawa in NPO 3D Associates, Prof. Scott Tyo in the University of New South Wales, Dr. Taisuke Miura in HiLASE Centre, Prof. Akihiko Takahashi, Prof. Daisuke Nakamura, and Prof. Tatsuo Okada in Kyushu University. This work was supported in part by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan), JST (Japan Science and Technology Agency), A-STEP (Adaptable and Seamless Technology Transfer Program) through target driven R&D, number AS242Z01381K, and JSPS KAKENHI through a Grants-in-Aid for Scientific Research, number (C) 26420205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Wakayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakayama, T., Higashiguchi, T. & Otani, Y. Generation of the determined vectorial vortex beams by use of an achromatic axially symmetric waveplate. Opt Rev 24, 449–461 (2017). https://doi.org/10.1007/s10043-017-0315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0315-1

Keywords

Navigation