Skip to main content
Log in

Depth dependence and exponential models of permeability in alluvial-fan gravel deposits

Dépendance à la profondeur et modèles exponentiels de perméabilité dans des cônes de déjection graveleux

Dependencia de la profundidad y modelos exponenciales de la permeabilidad en depósitos de gravas de abanicos aluviales

Modelos exponenciais e dependência da profundidade nos valores de permeabilidade em cones aluviais de depósitos de cascalheiras

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

To determine depth dependence of permeability in various geologic deposits, exponential models have often been proposed. However, spatial variability in hydraulic conductivity, K, rarely fits this trend in coarse alluvial aquifers, where complex stratigraphic sequences follow unique trends due to depositional and post-depositional processes. This paper analyzes K of alluvial-fan gravel deposits in several boreholes, and finds exponential decay in K with depth. Relatively undisturbed gravel cores obtained in the Toyohira River alluvial fan, Sapporo, Japan, are categorized by four levels of fine-sediment packing between gravel grains. Grain size is also analyzed in cores from two boreholes in the mid-fan and one in the fan-toe. Profiles of estimated conductivity, \( \overline{K} \), are constructed from profiles of core properties through a well-defined relation between slug-test results and core properties. Errors in \( \overline{K} \) are eliminated by a moving-average method, and regression analysis provides the decay exponents of \( \overline{K} \) with depth. Moving-average results show a similar decreasing trend in only the mid-fan above ∼30-m depth, and the decay exponent is estimated as ≈0.11 m−1, which is 10- to 1,000-fold that in consolidated rocks. A longitudinal cross section is also generated by using the profiles to establish hydrogeologic boundaries in the fan.

Résumé

Pour déterminer la dépendance de la perméabilité à la profondeur dans divers dépôts géologiques, des modèles exponentiels ont souvent été proposés. Toutefois, la variabilité spatiale de la conductivité hydraulique, K, reflète rarement cette tendance dans les aquifères alluviaux grossiers, où les séquences stratigraphiques complexes représentent des tendances spécifiques dues aux processus antérieurs et postérieurs aux dépôts. Cet article analyse le K des dépôts du cône de déjection dans plusieurs trous de forage, et en montre la décroissance exponentielle avec la profondeur. Les carottes de gravier relativement non perturbées obtenues dans le cône alluvionnaire de la rivière Toyohira, Sapporo, Japon, sont caractérisées par quatre niveaux de sédiments fins emballant des graviers. La granulométrie est aussi analysée dans les carottes de deux forages dans le cône moyen et d’un forage dans l’apex du cône de déjection. Des profils de la conductivité estimée \( \overline{K} \) sont construits à partir de profils des propriétés des carottes à l’aide d’une relation bien établie entre les résultats de tests d’infiltration et les propriétés des carottes. Les erreurs sur \( \overline{K} \) sont éliminées par la méthode de la moyenne mobile, et une analyse de régression fournit l’exposant de la décroissance de \( \overline{K} \) en fonction de la profondeur. Les résultats de la moyenne mobile montrent une tendance similaire à la décroissance seulement dans le mi cône au dessus de ∼30-m de profondeur, et l’exposant de décroissance est estimé ≈0.11 m−1, ce qui est 10- à 1000 fois celui des roches consolidées. Une coupe longitudinale a aussi été générée en utilisant les profils pour établir les limites hydrogéologiques du cône.

Resumen

Para determinar la dependencia de la profundidad con la permeabilidad en varios depósitos geológicos, se han propuesto a menudo modelos exponenciales, Sin embargo, la variabilidad espacial en la conductividad hidráulica, K, raramente se ajusta a esta tendencia en acuífero aluviales gruesos, donde las secuencias estratigráficas complejas siguen tendencias únicas debido a los procesos deposicionales y post-deposicionales. Este trabajo analiza la K de los depósitos de gravas de abanicos aluviales en varias perforaciones y encuentra una disminución exponencial en K con la profundidad. Testigos de gravas relativamente no disturbados obtenidos en el abanico aluvial del Río Toyohira, Sapporo, Japón, son categorizados por cuatros niveles de empaquetamientos de sedimentos finos entre granos de grava. El tamaño de grano es también analizado en testigos a partir de dos perforaciones en el sector medio del abanico y una en el pie del abanico. Los perfiles de la conductividad estimada, \( \overline{K} \), se construyeron a partir de perfiles de las propiedades de los testigos a través de una bien definida relación entre los resultados de los slug tests y las propiedades de los testigos. Los errores en \( \overline{K} \) son eliminados por un método de media móvil, y los análisis de regresión que proporcionan los exponentes de decrecimiento de \( \overline{K} \) con la profundidad. Los resultados de la media móvil muestran una tendencia decreciente similar en solo el abanico medio por encima de ∼30-m de profundidad y el exponente de decrecimiento es estimado como ≈0.11 m−1, lo cual es 10- a 1000- veces el de las rocas consolidadas. Se genera también una sección longitudinal usando los perfiles para establecer los límites hidrogeológicos en el abanico.

Resumo

Têm sido frequentemente propostos modelos exponenciais para determinar a dependência da permeabilidade em função da profundidade em vários depósitos geológicos. No entanto, a variabilidade espacial da condutividade hidráulica, K, raramente se enquadra nesta tendência em aquíferos aluviais formados por sedimentos grosseiros, onde complexas sequências estratigráficas seguem tendências únicas, relacionadas com os processos de deposição e pós-deposição. Este artigo analisa a condutividade hidráulica, K, de cones aluviais de depósitos de cascalheiras em vários furos, e encontra um decaimento exponencial de K com a profundidade. Amostras relativamente intactas de cascalheiras, obtidas no cone aluvial do Rio Toyohira, Sapporo, Japão, são caraterizadas por uma matriz de quatro níveis de sedimentos finos entre os elementos das cascalheiras. O tamanho dos grãos também é analisado em amostras de dois furos localizados na zona média do cone aluvial, e num furo localizado na base do cone aluvial. Perfis de condutividade estimada, \( \overline{K} \), são construídos a partir de perfis de propriedades das amostras, através de uma relação bem definida entre resultados dos ensaios slug e as propriedades das amostras. Os erros em \( \overline{K} \) são eliminados através de um método de média móvel, e a análise de regressão fornece os expoentes de decaimento de \( \overline{K} \) com a profundidade. Resultados da média móvel mostram uma tendência decrescente semelhante apenas para a zona média do cone aluvial, acima da profundidade aproximada de 30 m, e o expoente de decaimento é estimado em ≈0.11 m−1, 10 a 1000 vezes menor do que em rochas consolidadas. Também é gerada uma seção transversal longitudinal, usando os perfis, para definir as fronteiras hidrogeológicas no cone aluvial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. GSA Bull 101:501–511. doi:10.1130/0016-7606

    Article  Google Scholar 

  • ASCE (American Society of Civil Engineers) (2008) Standard guideline for fitting saturated hydraulic conductivity using probability density functions (ASCE EWRI 50–08). ASCE, Reston, VA

    Google Scholar 

  • Cardenas MB, Jiang XW (2010) Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46:W11538. doi::10.1029/2010WR009370

    Google Scholar 

  • Chen X (2011) Depth-dependent hydraulic conductivity distribution patterns of a streambed. Hydrol Proc 25:278–287. doi:10.1002/hyp.7844

    Article  Google Scholar 

  • Cheong JY, Hamm SY, Kim HS, Ko EJ, Yang K, Lee JH (2008) Estimating hydraulic conductivity using grain-size analyses, aquifer tests, and numerical modeling in a riverside alluvial system in South Korea. Hydrogeol J 16:1129–1143. doi:10.1007/s10040-008-0303-4

    Article  Google Scholar 

  • Daimaru H (1989) Holocene evolution of the Toyohira River alluvial fan and distal floodplain, Hokkaido, Japan. Geophys Rev Jpn 62A–8:589–603

    Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology. Academic Press, London

    Google Scholar 

  • dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Comunian A, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20:299–311. doi:10.1007/s10040-011-0808-0

    Article  Google Scholar 

  • Domenico PA, Shwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  • Einsele G (2000) Sedimentary Basins, 2nd edn. Springer, Heidelberg, Germany

    Google Scholar 

  • Falivene O, Cabrera L, Sáez Large A (2007) Large to intermediate-scale aquifer heterogeneity in fine-grain dominated alluvial fans (Cenozoic as Pontes Basin, northwestern Spain): insight based on three-dimensional geostatistical reconstruction. Hydrogeol J 15:861–876. doi:10.1007/s10040-007-0187-8

    Article  Google Scholar 

  • Ferreira JT, Ritzi RW Jr, Dominic DF (2010) Measuring the permeability of open-framework gravel. Ground Water 48:593–597. doi:10.1111/j.1745-6584.2010.00675.x

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Heinz J, Kleineidam S, Teutsch G, Aigner T (2003) Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sediment Geol 158:1–23

    Article  Google Scholar 

  • Hess KM, Wolf SH, Celia MA (1992) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour Res 28:2011–2027. doi:10.1029/92WR00668

    Article  Google Scholar 

  • Hokkaido Regional Development Bureau (2006) Toyohiragawa hoka kasyou zairyou chousa gyoumu houkokusyo [Investigation report on riverbed material in the Toyohira River]. Hokkaido Regional Development Bureau, Sapporo, Japan

    Google Scholar 

  • Hokkaido Regional Development Bureau (2008) Toyohiragawa sougou mizu kanri kentou gyoumu houkokusyo [Investigation report on comprehensive water management of the Toyohira River]. Hokkaido Regional Development Bureau, Sapporo, Japan

    Google Scholar 

  • Hu SG, Miyajima S, Nagaoka D, Koizumi K, Mukai K (2010) Study on the relation between groundwater and surface water in Toyohira-gawa alluvial fan, Hokkaido, Japan. In: Taniguchi M, Holman IP (eds) Groundwater response to changing climate. CRC, London. doi:10.1201/b10530-13

    Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. USACE WES Bull. 36:1–50

    Google Scholar 

  • Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • JGS (Japan Geotechnical Society) (2004) Method for determination of hydraulic properties of aquifer in single borehole. Japanese standards for geotechnical and geoenvironmental investigation methods. JGS, Tokyo

    Google Scholar 

  • Jiang XW, Wan L, Wang XS, Ge S, Liu J (2009) Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys Res Lett 36:L24402. doi:10.1029/2009GL041251

    Article  Google Scholar 

  • Jiang XW, Wang XS, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrogeol J 18:839–850. doi:10.1007/s10040-010-0575-3

    Article  Google Scholar 

  • Jussel P, Stauffer F, Dracos T (1994) Transport modeling in heterogeneous aquifers: 1. statistical description and numerical generation of gravel deposits. Water Resour Res 30:1803–1817

    Article  Google Scholar 

  • Kamann PJ, Ritzi RW, Dominic DF, Conrad CM (2007) Porosity and permeability in sediment mixtures. Ground Water 45:429–438. doi:10.1111/j.1745-6584.2007.00313.x

    Article  Google Scholar 

  • Koltermann CE, Gorelick SM (1995) Fractional packing model for hydraulic conductivity derived sediment mixtures. Water Resour Res 31:3283–3297

    Article  Google Scholar 

  • Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-Imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658. doi:10.1029/96WR00025

    Article  Google Scholar 

  • Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Lunt IA, Bridge JS (2007) Formation and preservation of open-framework gravel strata in unidirectional flows. Sedimentol 54:71–87. doi:10.1111/j.1365-3091.2006.00829.x

    Article  Google Scholar 

  • Lunt IA, Bridge JS, Tye RA (2004) A quantitative, three-dimensional depositional model of gravelly braided rivers. Sedimentology 41:377–414. doi:10.1111/j.1365-3091.2004.00627.x

    Article  Google Scholar 

  • Luo W, Grudzinski B, Pederson D (2011) Estimating hydraulic conductivity for the Martian subsurface based on drainage patterns: a case study in the Mare Tyrrhenum Quadrangle. Geomorphology 125:414–420. doi:10.1016/j.geomorph.2010.10.018

    Article  Google Scholar 

  • Major JJ (1997) Depositional processes in large-scale debris-flow experiments. J Geol 105:345–366. doi:10.1086/515930

    Article  Google Scholar 

  • Major JJ (2000) Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics. J Sediment Res 70:64–83. doi:10.1306/2DC408FF-0E47-11D7-8643000102C1865D

    Article  Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37:127–150. doi:10.1029/1998RG900002

    Article  Google Scholar 

  • Marion A, Packman AI, Zaramella M, Bottacin-Busolin A (2008) Hyporheic flows in stratified beds. Water Resour Res 44:W09433. doi:10.1029/2007WR006079

    Google Scholar 

  • Matsumoto N, Yamaguchi Y (1991) Interaction between stress and permeability in sand and gravel deposit. J Geotech Eng 430:59–67

    Google Scholar 

  • McElwee CD, Butler JJ Jr, Healey JM (1991) A New sampling system for obtaining relatively undisturbed samples of unconsolidated coarse sand and gravel. Ground Water Monit Remediat 11:182–191. doi:10.1111/j.1745-6592.1991.tb00390.x

    Article  Google Scholar 

  • Miall AD (1992) Alluvial deposits. In: Walker RG, James NP (eds) Facies models response to sea level change. Geological Association of Canada, Toronto

    Google Scholar 

  • Morin RH (2006) Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA. J Hydrol 316:43–52. doi:10.1016/j.jhydrol.2005.04.013

    Article  Google Scholar 

  • Neton MJ, Dorsch J, Olson CD, Young SC (1994) Architecture and directional scales of heterogeneity in alluvial-fan aquifers. J Sediment Res 64B:245–257

    Google Scholar 

  • Oka T (2005) Analyzing the subsurface geologic structure of the central part of Sapporo City and its northwest suburb by drilling data of fluid resources, with notes on geological explanation for six profiles of seismic prospecting performed by the municipal authorities of Sapporo City and so on. Rep Geol Surv Hokkaido 76:1–54

    Google Scholar 

  • Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York

    Google Scholar 

  • Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res 109(B04204). doi:10.1029/2003JB002855

    Google Scholar 

  • Sakata Y, Ikeda R (2012a) Quantification of longitudinal river discharge and leakage in an alluvial Fan by synoptic survey using handheld ADV. J Jpn Soc Hydrol Water Res 25:89–102

    Article  Google Scholar 

  • Sakata Y, Ikeda R (2012b) Effectiveness of a high resolution model on groundwater simulation in an alluvial fan. Geophys Bull Hokkaido Univ 75:73–89

    Google Scholar 

  • Sakata Y, Ito K, Isozaki S, Ikeda R (2011) A distribution model of permeability derived from undisturbed gravelly samples in alluvial fan. Jpn Geotech J 6:109–119

    Article  Google Scholar 

  • Shepherd RG (1989) Correlations of permeability and grain size. Ground Water 27:633–638. doi:10.1111/j.1745-6584.1989.tb00476.x

    Article  Google Scholar 

  • Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5:1273–1289. doi:10.1029/WR005i006p01273

    Article  Google Scholar 

  • Song J, Chen X, Cheng C, Wang D, Lackey S, Xu Z (2009) Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds. J Hydrol 375:428–437. doi:10.1016/j.jhydrol.2009.06.043

    Article  Google Scholar 

  • Tanaka Y, Kudo K, Yosida Y, Nisi K, Aida M, Suzuki H (1990) On the applicability of various sampling methods to the gravelly ground. Cent Res Inst Electr Power Industry, Rep no. U90046, Abiko Research Lab, Abiko, Japan

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, New York

    Google Scholar 

  • Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain-size data. J Hydrol 400:58–71. doi:10.1016/j.jhydrol.2011.01.022

    Article  Google Scholar 

  • Vukovic M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources, Littleton, CO

    Google Scholar 

  • Wackernagel H (2010) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Berlin

    Google Scholar 

  • Wang XS, Jiang XW, Wan L, Song G, Xia Q (2009) Evaluation of depth-dependent porosity and bulk modulus of a shear using permeability-depth trends. Int J Rock Mech Min Sci 46:1175–1181. doi:10.1016/j.ijrmms.2009.02.002

    Article  Google Scholar 

  • Yamaguchi H, Osanai H, Sato O, Futamase K, Obara T, Hayakawa F, Yokoyama E (1965). Explanatory text of hydrogeological maps of Hokkaido no. 8, Sapporo, special part “The grounds and groundwater of Sapporo environments.” Geological survey of Hokkaido, Sapporo, Japan

  • Zappa G, Bersezio R, Felletti F, Giudici M (2006) Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale. J Hydrol 325:134–153. doi:10.1016/j.jhydrol.2005.10.016

    Article  Google Scholar 

  • Zlotnik VA, Cardenas MB, Toundykov D (2011) Effects of multiscale anisotropy on basin and hyporheic groundwater Flow. Ground Water 49:576–583. doi:10.1111/j.1745-6584.2010.00775.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Hokkaido Regional Development Bureau, the administrator of the Toyohira River, for providing core samples, slug test data and technical reports. Special thanks are given to Prof. Satoshi Okamura of the Hokkaido University of Education and Dr. Tsumoru Sagayama of the Geological Survey of Hokkaido, who performed volcanic ash analysis and diatom analysis on the BW7 core, respectively. Helpful comments about the geology in the fan from Mr. Daisuke Nagaoka of Raax Co., Ltd. and Dr. Kenji Kizaki were also received with gratitude. Comments from the reviewer John Ong, the Associate Editor Bayani M Cardenas, and the Editor Maria-Theresia Schafmeister have helped us make substantial improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Sakata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakata, Y., Ikeda, R. Depth dependence and exponential models of permeability in alluvial-fan gravel deposits. Hydrogeol J 21, 773–786 (2013). https://doi.org/10.1007/s10040-013-0961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0961-8

Keywords

Navigation