Skip to main content

Advertisement

Log in

Stochastic forecasts of seawater intrusion towards sustainable groundwater management: application to the Korba aquifer (Tunisia)

Prévisions d’avancée d’un biseau salé par une méthode stochastique en vue d’une gestion durable des eaux souterraines : application à l’aquifère de Korba (Tunisie)

Pronósticos estocásticos de la intrusión de agua de mar en la gestión sustentable de agua subterránea: aplicación al acuífero de Korba (Túnez)

以地下水管理为目的海水入侵随机预测:在突尼斯Korba含水层的应用

Previsões estocásticas de intrusão marinha para uma gestão sustentável da água subterrânea: aplicação ao aquífero Korba (Tunísia)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A stochastic study of long-term forecasts of seawater intrusion with an application to the Korba aquifer (Tunisia) is presented. Firstly, a geostatistical model of the exploitation rates was constructed, based on a multi-linear regression model combining incomplete direct data and exhaustive secondary information. Then, a new method was designed and used to construct a geostatistical model of the hydraulic conductivity field by combining lithological information and data from hydraulic tests. Secondly, the effects of the uncertainties associated with the pumping rates and the hydraulic conductivity field on the 3D density-dependent transient model were analysed separately and then jointly. The forecasts of the impacts of two different management scenarios on seawater intrusion in the year 2048 were performed by means of Monte Carlo simulations, accounting for uncertainties in the input parameters as well as possible changes of the boundary conditions. Combining primary and secondary data allowed maps of pumping rates and the hydraulic conductivity field to be constructed, despite a lack of direct data. The results of the stochastic long-term forecasts showed that, most probably, the Korba aquifer will be subject to important losses in terms of regional groundwater resources.

Résumé

On présente ici une étude stochastique des prévisions à long terme de l’intrusion marine, avec son application à l’aquifère de Korba (Tunisie). En premier lieu, un modèle géostatistique des débits d’exploitation a été construit sur la base d’un modèle de régression multilinéaire combinant des données directes incomplètes et des informations secondaires exhaustives. Ensuite, on a élaboré et utilisé une nouvelle méthodologie de construction d’un modèle géostatistique du champ de conductivité hydraulique en combinant des données lithologiques et des données issues des tests hydrauliques. Dans un second temps, on a analysé séparément puis conjointement les effets des incertitudes associées aux débits de pompage et au champ de conductivité hydraulique sur le modèle transitoire 3D avec effet de densité. Les prévisions des impacts sur l’intrusion saline de deux scénarios différents de gestion à l’horizon 2048 ont été calculés au moyen de simulations de Monte Carlo, tenant compte à la fois de l’incertitude sur les paramètres d’entrée et de possibles changements dans les conditions aux limites. La combinaison de données principales et secondaires a permis la construction de cartes de débits d’exploitation et de champ de conductivité hydraulique malgré le manque d’information directe. Les résultats des prévisions stochastiques à long terme montrent que l’aquifère de Korba subira très probablement d’importantes pertes des ressources en eaux souterraines.

Resumen

Se presenta un estudio estocástico a largo plazo de pronóstico de la intrusión de agua de mar con una aplicación al acuífero de Korba (Túnez). En primer lugar, se construyó un modelo geoestadístico de los caudales de explotación, basado en un modelo de regresión multi linear combinando datos directos incompletos y información secundaria exhaustiva. Luego, se diseñó y usó un método para construir un nuevo modelo geoestadístico del campo de conductividad hidráulica combinando información litológica y datos de ensayos de bombeo. En segundo lugar, se analizaron separada y conjuntamente, los efectos de las incertezas asociadas con los caudales de bombeo y el campo de conductividad hidráulica en un modelo transitorio tridimensional dependiente de la densidad. Se realizaron pronósticos de los impactos de dos escenarios diferentes de gestión sobre la intrusión de agua de mar en el año 2048 por medio de simulaciones de Monte Carlo, teniendo en cuenta las incertezas en los parámetros de entrada así como posibles cambios de las condiciones de borde. La combinación de datos primarios y secundarios permitió construir mapas de los caudales de bombeo y de los campos de conductividad hidráulica, a pesar de una falta de datos directos. Los resultados de los pronósticos estocásticos a largo plazo mostraron que, muy probablemente, el acuífero de Korba estará sujeto a pérdidas importantes en términos de los recursos regionales de agua subterránea.

摘要

本文研究了对海水入侵的长期预测随机模型在Korba含水层(突尼斯)的应用。首先,本文在结合了不完全的直接资料和详尽的次级资料的多线性回归模型的基础上,建立了开采率的地质统计模型。然后,文中设计了一种新方法,通过与岩性资料和水力试验得到数据相结合来建立渗透系数场的地质统计模型。第二,文中单独并联合分析了与抽水率、在密度有关的3D传导模型中的渗透系数场有关的不确定性的影响。利用蒙特卡罗模拟,本文预测了到2048年时两种不同的管理情景对海水入侵的影响,解释了输入参数的不确定性和边界条件可能发生的变化。虽然缺乏直接资料,通过综合考虑主要资料和次级资料,文中建立了抽水率和渗透系数场图。随机长期预测的结果显示,就区域地下水资源而言,Korba含水层的水量很有可能会大幅度减少。

Resumo

É apresentado um estudo estocástico de previsões a longo prazo de intrusão marinha com aplicação ao aquífero Korba (Tunísia). Em primeiro lugar foi construído um modelo geoestatístico das taxas de extração, baseado num modelo de regressão multi-linear que combina dados diretos incompletos com informação secundária exaustiva. Depois, foi desenvolvido e utilizado um novo método para construir um modelo geoestatístico do campo de condutividade hidráulica, através da combinação de informação litológica com dados de ensaios hidráulicos. Em segundo lugar, foram analisados, separadamente e depois conjuntamente, os efeitos das incertezas associadas às taxas de bombagem e ao campo de condutividade hidráulica no modelo 3-D transitório dependente da densidade. Foram realizadas as previsões dos impactes de dois cenários distintos de gestão na intrusão marinha no ano de 2048, através de simulações de Monte Carlo, tendo em conta as incertezas nos parâmetros de entrada, assim como eventuais alterações das condições de fronteira. Não obstante a escassez de dados diretos, a combinação de dados primários e secundários permitiu construir mapas de taxas de bombagem e do campo da condutividade hidráulica. Os resultados das previsões estocásticas a longo prazo mostraram que, muito provavelmente, o aquífero Korba vai estar sujeito a perdas importantes em termos de recursos hídricos subterrâneos regionais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ababou R (1995) Random porous media flow on large 3-D grids: numerics, performance and application to homogenization. In: Wheeler MF (ed) Environmental studies: mathematical, computational and statistical analysis. IMA Volumes in Mathematics and its Applications, Springer, New York, pp 1–25

    Google Scholar 

  • Abarca E (2006) Seawater intrusion in complex geological environments. PhD Thesis, Technical University of Catalonia, Spain

  • Abarca E, Vazquez-Sune E, Carrera J, Capino B, Gamez D, Batlle F (2006) Optimal design of measures to correct seawater intrusion. Water Resour Res 42:W09415. doi:10.1029/2005WR004524

    Article  Google Scholar 

  • Abarca E, Carrera J, Sánchez-Vila X, Dentz M (2007) Anisotropic dispersive Henry problem. Adv Water Resour 30:913–926. doi:10.1016/j.advwatres.2006.08.005

    Article  Google Scholar 

  • Al-Bitar A, Ababou R (2005) Random field approach to seawater intrusion in heterogeneous coastal aquifers: unconditional simulations and statistical analysis. In: Renard P, Demougeot-Renard H, Froidevaux R (eds) Geostatistics for environmental applications. Springer, Heidelberg, Germany

  • Alcolea A, Renard P, Mariethoz G, Bertone F (2009) Reducing the impact of a desalination plant using stochastic modeling and optimization techniques. J Hydrol 365(3–4):275–288

    Article  Google Scholar 

  • Allen PA, Allen JR (1990) Basin analysis: principles and applications. Blackwell, Oxford

  • Arfib B, de Marsily G, Ganoulis J (2002) Coastal karst springs in the Mediterranean basin: study of the mechanisms of saline pollution at the Almyros spring (Crete), observations and modelling. Bull Soc Geol Fr 173(3):245–253

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 pp

  • Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Ben Hamouda M, Tarhouni J, Leduc C, Zouari K (2011) Understanding the origin of salinization of the Plio-quaternary eastern coastal aquifer of Cap Bon (Tunisia) using geochemical and isotope investigations. Environ Earth Sci 63(5):889–901

    Article  Google Scholar 

  • Brunner P, Kinzelbach W (2008) Sustainable Groundwater Management. Encycl Hydrol Sci. doi:10.1002/0470848944.hsa164

  • Cheng AHD, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater-intruded coastal aquifers. Water Resour Res 36(8):2155–2165

    Article  Google Scholar 

  • Cooper HH, Bredehoeft JD, Papadopulos SS (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resour Res 3(1):263–269

    Article  Google Scholar 

  • Cornaton F (2007) GroundWater: a 3-D ground water flow and transport finite element simulator. Reference manual, 190 pp. http://www1.unine.ch/chyn/php/softwares.php. Accessed August 2008

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10(2):254–277

    Article  Google Scholar 

  • Dagan G, Zeitoun DG (1998) Seawater–freshwater interface in a stratified aquifer of random permeability distribution. J Contam Hydrol 29(3):185–203

    Article  Google Scholar 

  • Delhomme JP (1979) Spatial variability and uncertainty in groundwater-flow parameters: geostatistical approach. Water Resour Res 15(2):269–280

    Article  Google Scholar 

  • DGRE (2000) Rapport d’exploitation des nappes phréatiques de l’année 2000. Direction Générale des Ressources en Eau [Report on the exploitation of groundwater in 2000. General Directorate of Water Resources]. Ministère de l’agriculture et des ressources hydrauliques, Tunis, Tunisia

  • Diersch H-JG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25(8–12):899–944

    Article  Google Scholar 

  • Doherty J (1998) PEST-Model independent parameter estimation. Watermark Numerical Computing, Brisbane, Australia

    Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284(1–4):244–252

    Article  Google Scholar 

  • Elder JW (1958) Numerical experiments with a free convection in a vertical slot. J Fluid Mech 24:823–843

    Article  Google Scholar 

  • Ennabli M (1980) Etude hydrogéologique des aquifers du nord-est de la Tunisie pour une gestion intégrée des ressources en eau [Hydrogeological study of aquifers of northeast Tunisia for the integrated management of water resources]. PhD Thesis, Université de Nice, France

  • Essink G (2001) Salt water intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study. Transp Porous Media 43(1):137–158

    Article  Google Scholar 

  • Grava M (2005) Hydrochemical, hydrogeological, and geostatistical analysis of Eastern Cape Bon aquifer (northern Tunisia). Postgraduate Thesis, Centre d’hydrogéologie de l'Université de Neuchâtel, Switzerland

  • Hassan A, Pohlmann K, Chapman J (2001) Uncertainty analysis of radionuclide transport in a fractured coastal aquifer with geothermal effects. Transp Porous Media 43(1):107–136

    Article  Google Scholar 

  • Held R, Attinger S, Kinzelbach W (2005) Homogenization and effective parameters for the Henry problem in heterogeneous formations. Water Resour Res 41:1–14. doi:10.1029/2004WR003674

    Article  Google Scholar 

  • Hendricks Franssen HJ (2009) The impact of climate change on groundwater resources. Int J Cli Chang Strateg Manag 1(3):241–254

    Article  Google Scholar 

  • Henry HR (1964) Efects of dispersion on salt enrichment in coastal aquifers. In: Sea water in coastal aquifers. US Geol Surv Water Supp Pap 1613-C, pp 70–84

  • Holman IP (2006) Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeol J 14(5):637–647

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations, Bull. No. 36, Waterways Exper. Sta., US Army Corps of Eng., Vicksburg, MS, pp 1–50

    Google Scholar 

  • INS (2007) Prévisions sur l'évolution de la Population 2004-2034 [Predictions about the evolution of the population 2004-2034]. Institut National de la Statistique, Tunis, Tunisia. http://www.ins.nat.tn/. Accessed August 2012

  • Iribar V, Carrera J, Custodio E, Medina A (1997) Inverse modelling of seawater intrusion in the Llobregat delta deep aquifer. J Hydrol 198(1–4):226–244

    Article  Google Scholar 

  • Kerrou J, Renard P (2010) A numerical analysis of dimensionality and heterogeneity effects on advective dispersive seawater intrusion processes. Hydrogeol J 18(1):55–72. doi:10.1007/s10040-009-0533-0

    Article  Google Scholar 

  • Kerrou J, Renard P, Tarhouni J (2010a) Status of the Korba groundwater resources (Tunisia): observations and 3D modelling of seawater intrusion. Hydrogeol J 18(5):1173–1190. doi:10.1007/s10040-010-0573-5

    Article  Google Scholar 

  • Kerrou J, Renard P, Lecca G, Tarhouni J (2010b) Grid-enabled Monte Carlo analysis of the impacts of uncertain discharge rates distribution on seawater intrusion in the Korba aquifer (Tunisia). Hydrol Sci J 55(8):1325–1336. doi:10.1080/02626667.2010.519706

    Article  Google Scholar 

  • Khlaifi I (1998) Contribution à l'étude de l'intrusion marine par un modèle de transport tridimensionnel: interfaçage avec des systèmes d'information géographique [Contribution to the study of seawater intrusion using a three-dimensional transport model interfacing with GIS]. MSc Thesis, Institut National Agronomique de Tunisie, Tunisia

  • Kouzana L, Ben Mammou A, Sfar Felfoul M (2009) Seawater intrusion and associated processes: case of the Korba aquifer (Cap-Bon, Tunisia). C R Geosci 341(1):21–35

    Article  Google Scholar 

  • Lecca G, Petitdidier M, Hluchy L, Ivanovic M, Kussul N, Ray N, Thieron V (2011) Grid computing technology for hydrological applications. J Hydrol 403(1–2):186–199

    Article  Google Scholar 

  • Mangiarotti S (2003) Les variations basse fréquence du niveau de la mer Méditerranée au cours de la deuxième moitié du XXe siècle par altimétrie spatiale et marégraphie [Low-frequency variations in the Mediterranean Sea level during the second half of the twentieth century by satellite altimetry and tide gauge]. PhD Thesis, Université de Toulouse III – Paul Sabatier, France

  • Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297(1–4):209–228

    Article  Google Scholar 

  • Mariethoz G, Renard P, Cornaton F, Jaquet O (2009) Truncated plurigaussian simulations to characterize aquifer heterogeneity. Ground Water 47(1):13–24. doi:10.1111/j.1745-6584.2008.00489.x

    Article  Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5(3):439–468

    Article  Google Scholar 

  • Milnes E (2011) Process-based groundwater salinisation risk assessment methodology: application to the Akrotiri aquifer (southern Cyprus). J Hydrol 399(1–2):29–47

    Article  Google Scholar 

  • Naji A, Cheng AHD, Ouazar D (1998) Analytical stochastic solutions of saltwater/freshwater interface in coastal aquifers. Stoch Hydrol Hydraul 12(6):413–430

    Article  Google Scholar 

  • Oueslati A (1994) Les côtes de la Tunisie. Recherche sur leur évolution au Quaternaire [The coast of Tunisia. Research on its evolution during the Quaternary]. Imprimerie officielle de la Republique Tunisienne, Tunis

    Google Scholar 

  • Paniconi C, Khlaifi I, Lecca G, Giacomelli A, Tarhouni J (2001) Modeling and analysis of seawater intrusion in the coastal aquifer of eastern Cap-Bon, Tunisia. Transp Porous Media 43:3–28

    Article  Google Scholar 

  • Pohlmann KF, Hassan AE, Chapman JB (2002) Modeling density-driven flow and radionuclide transport at an underground nuclear test: uncertainty analysis and effect of parameter correlation. Water Resour Res 38(5)

  • Ragab R, Prudhomme C (2002) Climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century. Biosyst Eng 81(1):3–34

    Article  Google Scholar 

  • Ranjan P, Kazama S, Sawamoto M (2006) Effects of climate change on coastal fresh groundwater resources. Glob Environ Chang 16(4):388–399

    Article  Google Scholar 

  • Reilly TE, Goodman AS (1985) Quantitative-analysis of saltwater fresh-water relationships in groundwater systems: a historical-perspective. J Hydrol 80:125–160

    Article  Google Scholar 

  • Renard P (2007) Stochastic hydrogeology: what professionals really need? Ground Water 45(5):531–541. doi:10.1111/j.1745-6584.2007.00340.x

    Article  Google Scholar 

  • Scibek J, Allen DM (2006) Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42, W11405

  • Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Processes 13(8):1277–1287

    Article  Google Scholar 

  • Slama F, Milnes E, Bouhlila R (2008) Calibrating unsaturated model parameters using electrical resistivity tomography imaging. In: Refsgaard JC, KK, Haarder E, Nygaard E (eds) Calibration and reliability in groundwater modelling: Credibility of modelling. IAHS Publ. 320, IAHS, Wallingford, UK, pp 148–153

  • Steenhuis TS, Van der Molen WH (1986) The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J Hydrol 84:221–229

    Article  Google Scholar 

  • Tarhouni J, Jemai S, Walraevens K, Rekaya M (1996) Caracterisation de l’aquifere cotier de Korba au Cap Bon (Tunisie) [Characterisation of the coastal aquifer of Korba Cape Bon (Tunisia)]. Progress report 95-96 for AVI-73 EC Project, Ghent University, Ghent, Belgium

  • Tompson AFB, Ababou R, Gelhar LW (1989) Implementation of the 3-dimensional turning bands random field generator. Water Resour Res 25:2227–2243

    Article  Google Scholar 

  • Werner A (2010) A review of seawater intrusion and its management in Australia. Hydrogeol J 18(1):281–285

    Article  Google Scholar 

  • Werner A, Simmons G (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204

    Article  Google Scholar 

Download references

Acknowledegments

This work has been funded by the Swiss National Science Foundation under Grants: 207020-110017 and PP002-106557. The authors thank Ghislain de Marsily, Rachid Ababou, Jesus Carrera as well as Ellen Milnes and Philip Brunner for providing valuable suggestions on the manuscript. The authors are also grateful to Gregoire Mariethoz and three anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaouher Kerrou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerrou, J., Renard, P., Cornaton, F. et al. Stochastic forecasts of seawater intrusion towards sustainable groundwater management: application to the Korba aquifer (Tunisia). Hydrogeol J 21, 425–440 (2013). https://doi.org/10.1007/s10040-012-0911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0911-x

Keywords

Navigation