Skip to main content
Log in

Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes

Essais hydrauliques au moyen d’un système polyvalent de double packer pour une estimation améliorée de la transmissivité dans les forages en roches fracturées

Ensayos hidráulicos usando un sistema de packer desplegable versátil para mejorar la estimación de la transmisividad en pozos de rocas fracturadas

种可以提高裂隙岩钻孔地区导水系数估算准确度的通用跨式双封隔器水力试验方法

Ensaios de caudal utilizando um sistema de obturador duplo versátil para melhorar o cálculo da transmissividade em furos localizados em rochas fraturadas

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Equipment has been developed for straddle packer testing in fractured-rock boreholes to conduct four types of tests (constant-head step tests, slug tests, constant-rate pumping tests, and recovery tests) without deflating the packers or adjusting equipment in the hole between tests. The goal is to achieve improved accuracy and precision in the determination of transmissivity (T). Water-pressure measurements are recorded using pressure transducers positioned above and below the test interval to identify connections from the test interval to the open borehole. Insights concerning the nature of test conditions are gathered with this equipment to assess errors related to deviations from assumptions inherent in the mathematical models used to determine T, including validation of the Darcian flow assumption, validation of slug test assumptions, cross-connection to the open borehole, inadequate borehole development, and dual permeability, thereby giving greater confidence in the calculated T values. When the errors indicated above are minimized, the constant-head step tests, slug tests and constant-rate pumping/recovery tests give nearly identical values. This multiple-test approach to fractured-rock studies increases confidence in test results, which is important when the goal is characterization of fracture networks for contaminant transport and fate assessment.

Résumé

Un équipement a été développé pour la réalisation d’essais entre deux packers dans les forages des roches fracturées afin de réaliser quatre types d’essais (essais par paliers à charge constante, slug tests, essais de pompage à débit constant et essais en remontée) sans dégonfler les packers ou positionner l’équipement dans le forage entre les essais. L’objectif est d’améliorer l’exactitude et la précision de la détermination de la transmissivité (T). Les mesures de la pression d’eau sont enregistrées au moyen de capteurs de pression positionnés au-dessus et en dessous de l’intervalle testé afin d’identifier les connections entre l’intervalle de test et le forage ouvert. Un aperçu des conditions d’essai est obtenu avec cet équipement afin d’évaluer les erreurs dues aux écarts par rapport aux hypothèses inhérentes aux modèles mathématiques utilisés pour déterminer T, y compris la validation de l’hypothèse d’écoulements de type Darcy, la validation des hypothèses de slug test, les court-circuits avec le forage ouvert, le développement imparfait du forage et la double perméabilité, ce qui donne ainsi une meilleure confiance dans les valeurs de T calculées. Lorsque les erreurs indiquées ci-dessus sont minimisées, les essais par paliers à charge constante, les slug tests et les essais de pompage à débit constant et remontée donnent des valeurs quasi identiques. Cette approche par essais multiples pour les études des roches fracturées augmente la confiance dans les résultats des essais, ce qui est important lorsque l’objectif est la caractérisation des réseaux de fractures pour prévoir le devenir de contaminants.

Resumen

Se ha desarrollado un equipo para el ensayo de un packer desplegable en pozos de rocas fracturadas para llevar a cabo cuatro tipos de ensayos (ensayos escalonados a carga constante, ensayos slugs, ensayos de bombeo a ritmo constante y ensayos de recuperación) sin deflación de los packers o ajustando en equipo en el pozo entre los ensayos. El objetivo es lograr una mejora en la exactitud y precisión en la determinación de la transmisividad (T). Las medidas de presión de agua son registradas usando transductores de presión colocados arriba y abajo del intervalo ensayado para identificar las conexiones desde intervalo del ensayo en el pozo abierto. Se reunieron los conocimientos acerca de la naturaleza de las condiciones de los ensayos con este equipo para evaluar los errores relacionados a desviaciones a partir de suposiciones inherentes a los modelos matemáticos usados para determinar T, incluyendo la validación del suposición del flujo Darciano, la validación de las suposiciones de los ensayos slug, la conexión cruzada con un pozo abierto, el desarrollo inadecuado del pozo y la permeabilidad dual, dando por lo tanto una mayor confianza a los valores calculados de T. Cuando se minimizan los errores indicados arriba, los ensayos escalonados a carga constante, los ensayos slug y los ensayos de bombeo/recuperación a ritmo constante dan valores prácticamente idénticos. Este enfoque de múltiples ensayos para estudios de rocas fracturadas incrementa la confianza en los resultados de los ensayos, lo cual es importante cuando el objetivo es la caracterización de las redes de fracturas para la evaluación del transporte y destino de contaminantes.

摘要

本文介绍了一种用于裂隙岩钻孔的跨式双封隔器水力试验装置,这套装置可用于四种试验(定水头阶梯流量抽水试验,重锤试验,定流量抽水试验,水位恢复试验),并且在试验过程中无需给封隔器放气和在试验间隔调整装置。此装置可以提高导水系数(T)估算的准确度和精度。在试验段之上、之下布设的压力传感器可以记录水压的变化,进而识别试验段与钻孔之间的联系。为评估在确定T的数学模型内与内在的假设偏差相关的的误差,包括达西流假设的有效性,重锤试验假设的有效性,试验段与钻孔的相互联系,不适当的成孔和双重渗透性的存在,文中分析了与试验条件本质有关的多种因素,这进一步提高了所计算的T的可信度。当将上面提到的误差降低到最小时,定水头阶梯流量抽水试验,重锤试验和定流量抽水/水位恢复试验都可以给出近乎理想的结果。这种用于研究裂隙岩地区的多试验方法提高了试验结果的可信度,当试验目的是描述裂隙网络的特征用于研究污染物的迁移与环境命运评估时,这是非常重要的。

Resumo

Desenvolveu-se um equipamento para realizar ensaios com obturador duplo em furos localizados em meios fraturados, o que permitiu realizar quatro tipos de testes [ensaios de nível constante escalonados, ensaios de perturbação instantânea (slug tests), ensaios com caudal de bombagem constante e ensaios de recuperação], sem descomprimir o obturador ou ajustar o equipamento no furo entre os ensaios. O objetivo é conseguir melhorar a precisão na determinação da transmissividade (T). As medições da pressão de água são registadas usando medidores de pressão posicionados acima e abaixo do intervalo do ensaio, para identificar ligações entre a zona do intervalo do ensaio e o furo aberto. Foi obtida uma análise sobre a natureza das condições do ensaio através deste equipamento, para avaliar os erros relacionados com desvios de premissas inerentes aos modelos matemáticos usados para determinarT, incluindo a validação da premissa de ser um escoamento segundo a lei de Darcy, a validação dos pressupostos dos ensaios de perturbação instantânea, a ligação com o furo aberto, se há desenvolvimento desadequado do furo, e a permeabilidade dupla, dando assim maior confiança aos valores de T calculados. Quando os erros acima indicados são minimizados, os ensaios de nível constante escalonados, os ensaios de perturbação instantânea e os ensaios de valor constante de bombagem/recuperação dão valores quase idênticos. Esta abordagem de ensaios múltiplos para estudos em rochas fraturadas aumenta a confiança nos resultados dos ensaios, o que é importante quando o objetivo é caraterizar os sistemas de fraturas para a análise do transporte e do destino dos contaminantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atkinson LC, Gale JE, Dudgeon CR (1994) New insight into the step-drawdown test in fractured-rock aquifers. Appl Hydrogeol 1:9–18

    Article  Google Scholar 

  • Andrews R, Wunsch D, Dinger J (2002) Evaluation of the use of fracture-flow solutions to analyze aquifer test data collected from wells in the Eastern Kentucky Coal Field. In: Proceedings of the National Ground Water Association Fractured-Rock Aquifer 2002 Conference, Denver, CO, March 13–15, 2002

  • Barker JA, Black JH (1983) Slug tests in fissured aquifers. Water Resour Res 19(6):1558–1564

    Article  Google Scholar 

  • Bentall R (1963) Methods of determining permeability, transmissivity and drawdown. U S Geol Surv Water Suppl Pap 1536-I:243–341

    Google Scholar 

  • Boulton NS, Streltsova TD (1977) Unsteady flow to a pumped well in a fissured water-bearing formation. J Hydrol 35(3–4):257–269

    Article  Google Scholar 

  • Bourdet D, Ayoub JA, Pirard YM (1989) Use of pressure derivative in well-test interpretation. SPE Form Eval 4(2):293–302

    Google Scholar 

  • Brunton FR (2008) Preliminary revisions to the early Silurian stratigraphy of Niagara escarpment: integration of sequence stratigraphy, sedimentology and hydrogeology to delineate hydrogeologic units. Ontario Geol Surv Open File Rep 6226

  • Butler JJ (1998) The design, performance, and analysis of slug tests. CRC, Boca Raton, FL

    Google Scholar 

  • Chapman S, Parker BL (2011) Use of numerical models to examine contaminant mass distribution and attenuation in fractured sedimentary rock. Presented at Geohydro 2011: Water and Earth: The Junction of Quaternary Geoscience and Hydrogeology, Quebec City, QC, Aug 29, 2011

  • Cook PG (2003) A guide to regional groundwater flow in fractured rock aquifers. Seaview, West Lakes, Australia

    Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalize graphical method for evaluating formation constants and summarizing well field history. Am Geophys Union Trans 27:526–534

    Google Scholar 

  • Doe TW, Remer J, Schwarz WJ (1980) Analysis of constant-head well tests in nonporous fractured rock. In: Proceedings of the 3rd International Well Testing Symposium, Berkeley, CA, Mar 26–28, 1980

  • Elsworth D, Doe TW (1986) Application of non-linear flow laws in determining rock fissure geometry from single borehole pumping tests. Int J Rock Mech Min 23:245–254

    Google Scholar 

  • Fox RW, McDonald AT (1992) Introduction to fluid mechanics. Wiley, New York

    Google Scholar 

  • Gale JE (1975) A numerical field and laboratory study of flow in rocks with deformable fractures. PhD Thesis, University of California Berkeley, USA

  • Gale JE (1982) Assessing the permeability characteristics of fractured rock. Geol Soc Am Spec Pap 189:163–181

    Google Scholar 

  • Geldon AL, Earle JD, Umari AMA (1997) Determination of barometric efficiency and effective porosity, boreholes UE-25 c#1 UE-25 c#2, and UE-25 c#3, Yucca Mountain, Nye County, Nevada, US Geol Surv Water Resour Invest Rep 97-4098

  • Gernand JD, Heidtman JP (1997) Detailed pumping test to characterize a fractured bedrock aquifer. Ground Water 35(4):632–637

    Article  Google Scholar 

  • Greene EA, Shapiro AM (2001) Methods of conducting air-pressurized slug tests and computation of type curves for estimating transmissivity and storativity. US Geol Surv Open-File Rep 95-424

  • Gringarten AC, Witherspoon PA (1972) A method of analyzing pump test data from fractured aquifers. International Society for Rock Mechanics Conference: Percolation through Fissured Rock, Stuttgart, Germany, September 1972

  • Gringarten AC (1987) How to recognize ‘double-porosity’ systems from well tests. Can Metall Q 39(6):631–633

    Google Scholar 

  • Horner DR (1951) Pressure build-up in wells. In: Proceedings of the Third World Petroleum Congress, Section II Drilling and Production, The Hague, Society of Petroleum Engineers,, Tulsa, OK, pp 38–43

  • Hsieh PA, Neuman SP, Simpson ES (1983) Pressure testing of fractured rocks; a methodology employing three-dimensional cross-hole tests: topical report, vol 3213. NUREG/CR (United States Nuclear Regulatory Commission), Delta, PA

  • Huntley D, Nommensen R, Steffey D (1992) The use of specific capacity to assess transmissivity in fractured-rock aquifers. Ground Water 30(3):396–402

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Waterways Experimental Station, Vicksburg, MS, 36 pp

  • Jacob CE (1963) The recovery method for determining the coefficient of transmissibility. U S Geol Surv Water Suppl Pap 1536-I, pp 283–292

    Google Scholar 

  • Kazemi H (1969) Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. In: Transaction of the SPE 43rd Annual Fall Meeting, Houston, TX, vol 246

  • Lapcevic PA (1988) Results of borehole packer tests at the Ville Mercier groundwater treatment site. National Water Research Institute, Burlington, ON

    Google Scholar 

  • Lapcevic PA, Novakowski KS, Sudicky EA (1999) Groundwater flow and solute transport in fractured media. In: Delleur JW (ed) Groundwater engineering handbook, chap. 17. CRC, Boca Raton, FL

  • Lee J, Lee K (1999) Analysis of the quality of parameter estimates from repeated pumping and slug tests in a fractured porous aquifer system in Wonju, Korea. Ground Water 37(5):692–700

    Article  Google Scholar 

  • Levy BS, Pannell LJ, Dadoly JP (1993) A pressure-packer system for conducting rising head tests in water table wells. J Hydrol 148(1–4):189–202

    Article  Google Scholar 

  • Louis C (1972) Rock hydraulics. In: Mueller L (ed) Rock mechanics, notes and courses. Springer, Heidelberg

  • Mackie CD (1982) Multi-rate testing in fractured formations. Aust Water Resour Counc Conf Ser 5:139–149

    Google Scholar 

  • Maini YN (1971) In-situ hydraulic parameters in jointed rock their measurement and interpretation. PhD Thesis, Imperial College, London

    Google Scholar 

  • Maini YN, Noorishad J, Sharp JC (1972) Theoretical and field considerations on the determination of in-situ hydraulic parameters in fractured rock. International Society for Rock Mechanics: Percolation through Fissured Rock, Stuttgart, September 1972

    Google Scholar 

  • McElwee CD (2001) Application of a nonlinear slug test model. Ground Water 39(5):737–744

    Article  Google Scholar 

  • McElwee CD, Zenner MA (1998) A nonlinear model for analysis of slug-test data. Water Resour Res 34(1):55–66

    Article  Google Scholar 

  • McLane GA, Harrity DA, Thomsen KO (1990) A pneumatic method for conducting rising and falling head tests in highly permeable aquifers. Proceedings of the National Outdoor Action Conferenceon Aquifer Restoration, Ground Water Monitoring and Geophysical Methods, vol 4. NWWA, Dublin, OH, pp 1219–1231

    Google Scholar 

  • Murdoch LC, Germanovich LN (2006) Analysis of a deformable fracture in permeable material. Int J Numer Anal Methods Geomech 30:529–561

    Article  Google Scholar 

  • National Research Council (NRC) (1996) Hydraulic and tracer testing of fractured rocks: rock fractures and fluid flow—contemporary understanding and applications. National Academy of Science, Washington, DC, pp 243–272

    Google Scholar 

  • Nielsen DM (2006) Practical handbook of environmental site characterization and ground water monitoring. CRC, Boca Raton, FL

    Google Scholar 

  • Novakowski KS (1988) Comparison of fracture aperture widths determined from hydraulic measurements and tracer experiments. In: Hitchon B, Bachu S (eds) Proceedings of the Canadian/American Conference on Hydrogeology, vol 4. NWWA, Dublin, OH, pp 68–80

    Google Scholar 

  • Parker BL, Cherry JA, Swanson BJ (2006) A multilevel system for high-resolution monitoring in rotasonic boreholes. Ground Water Monit R 26(4):57–73

    Article  Google Scholar 

  • Parker BL, Cherry JA, Chapman SW (2011) Advances in the DFN approach for investigating contaminated sites on fractured sedimentary rock. Presented at: the NGWA Focus Conference on Fractured Rock and Eastern Groundwater Regional Issues, Burlington, VT, Sep 26–27, 2011

  • Patchett RG (1993) Pneumatic well insert; performing pneumatic rising head tests in wells with screens straddling the water table. Presented at: Outdoor Action Conference, Las Vegas, NV, May 25–27, 1993

  • Pearson R, Money MS (1977) Improvements in the Lugeon or packer permeability test. Q J Eng Geol 10:221–239

    Article  Google Scholar 

  • Pehme P, Parker BL, Cherry JA (2010) Improved resolution of ambient flow through fractured rock with temperature logs. Ground Water 48(2):191–205

    Article  Google Scholar 

  • Pollard P (1959) Evaluation of acid treatments from pressure build up analysis. Pet Trans Am Inst Min Metall Pet Eng 216:38–43

    Google Scholar 

  • Price M (2009) Barometric water-level fluctuations and their measurement using vented and non-vented pressure transducers. Q J Eng Geol Hydrogeol 42:245–250

    Article  Google Scholar 

  • Price M, Williams A (1993) The influence of unlined boreholes on groundwater chemistry: a comparative study using pore-water extraction and packer sampling. J Inst Water Env Man 7(6):651–659

    Article  Google Scholar 

  • Price M, Morris B, Robertson A (1982) A study of intergranular and fissure permeability in Chalk and Permian aquifers, using double-packer injection testing. J Hydrol 54(4):401–423

    Article  Google Scholar 

  • Quinn PM, Cherry JA, Parker BL (2011a) Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. Water Resour Res 47, W09533, 15 pp. doi:10.1029/2010WR009681

    Google Scholar 

  • Quinn PM, Parker BL, Cherry JA (2011b) Using constant head step tests to determine hydraulic apertures in fractured rock. J Contam Hydrol 126(1–2):85–99

    Article  Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22(4):251–261

    Article  Google Scholar 

  • Rushton KR, Weller J (1985) Response to pumping of a weathered-fractured granite aquifer. J Hydrol 80(3–4):299–309

    Article  Google Scholar 

  • Sara MN (2005) Fractured-rock assessments. In: Site assessment and remediation handbook, 2nd edn., CRC, Boca Raton, FL, pp 323–426

  • Schwartz FW (1975) Response of testing piezometers in fractured porous media. Can Geotech J 12:408–412

    Article  Google Scholar 

  • Schweisinger T, Svenson EJ, Murdoch LC (2009) Introduction to hydromechanical well tests in fractured rock aquifers. Ground Water 47(1):69–79

    Article  Google Scholar 

  • Shapiro AM (2001) Characterizing ground-water chemistry and hydraulic properties of fractured-rock aquifers using the multifunction Bedrock-Aquifer Transportable Testing Tool (BAT (super 3)). US Geol Surv Fact Sheet 075-01

  • Shapiro AM (2007) Characterizing hydraulic properties and ground-water chemistry in fractured-rock aquifers; a user’s manual for the multifunction Bedrock-Aquifer Transportable Testing Tool (BAT (super 3)). US Geol Surv Open-File Rep 2007–1134

  • Shapiro AM, Hsieh PA (1998) How good are estimates of transmissivity from slug tests in fractured rock? Ground Water 36(1):37–48

    Article  Google Scholar 

  • Smith L, Schwartz FW (1984) An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resour Res 20(9):1241–1252

    Article  Google Scholar 

  • Snow DT (1965) A parallel plate model of fractured permeable media. PhD Thesis, University of California Berkeley, USA

  • Sterling SN, Parker BL, Cherry JA, Williams JH, Lane JW Jr, Haeni FP (2005) Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone. Ground Water 43(4):557–573

    Article  Google Scholar 

  • Sudicky EA, McLaren RG (1992) The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28(2):499–514

    Article  Google Scholar 

  • Svenson E, Schweisinger T, Murdoch LC (2007) Analysis of the hydromechanical behavior of a flat-lying fracture during a slug test. J Hydrol 347(1–2):35–47

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524

    Google Scholar 

  • Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23(1–2):1–44

    Article  Google Scholar 

  • US Bureau of Reclamation (1974) Field permeability tests in boreholes. Earth Manual, US Bureau of Reclamation, Washington, DC, pp 573–578

  • US Bureau of Reclamation (1977) Permeability tests in individual drill holes and wells. In Ground Water Manual, Dept of the Interior, US Bureau of Reclamation, Washington, DC, pp 317–342

  • Warren JE, Root PJ (1962) The behavior of naturally fractured reservoirs. Fall Meeting of the Society of Petroleum Engineers, Los Angeles, CA, Oct 7–10, 1962

  • Wenzel LK (1936) The Thiem method for determining permeability of water-bearing materials and its application to the determination of specific yield, results of investigations in the Platte River valley, Nebraska. US Geol Surv Water Suppl Pap 679-A

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Zeigler TW (1976) Determination of rock mass permeability. Technical report, US Waterways Experiment Station, Vicksburg, MS

  • Zenner MA (2008) Experimental evidence of the applicability of Colebrook and Borda Carnot-Type head loss formulas in transient slug test analysis, ASCE. J Hydraul Eng 134(5):644–651

    Article  Google Scholar 

  • Zenner MA (2009) Near-well nonlinear flow identified by various displacement well response testing. Ground Water 47(4):526–535

    Article  Google Scholar 

Download references

Acknowledgements

Bob Ingleton and Paul Johnson, of the University of Waterloo, and Jay Sitts, of Hydrite Chemical Company, Cottage Grove, Wisconsin, were instrumental in the development of the packer testing equipment. Campbell Scientific personnel were very helpful and aided in programming the datalogger. Pumps used in the packer testing system were provided by March Pumps (Glenview, Illinois). Funding for this investigation was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) for an Industrial Research Chair to Dr. Beth Parker, the Guelph Tool Company (Guelph, Ontario), the Hydrite Chemical Company, and the Boeing Company (Canoga Park, California).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patryk Quinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, P., Cherry, J.A. & Parker, B.L. Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes. Hydrogeol J 20, 1529–1547 (2012). https://doi.org/10.1007/s10040-012-0893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0893-8

Keywords

Navigation