Skip to main content
Log in

Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes

Análisis de cargas combinadas para reducir la incertidumbre en las pruebas de packer en pozos de rocas fracturadas

Analyses de la charge hydraulique composite afin de réduire l’incertitude des tests entre packers dans les forages en roches fracturées

混合水头分析以降低断裂岩层钻孔中压水试验的不确定性

Análise da carga hidráulica média para reduzir as incertezas de testes com obturadores em poços tubulares em rochas fraturadas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Open boreholes in fractured rock often cross-connect fractures with differing hydraulic head and the head differences between these fractures cause vertical flow in the water column. This cross-connection has potential to bias transmissivity (T) values obtained from straddle packer tests. This study demonstrates how measurements of the blended head in the open-hole segments above and below the straddle-packer test interval can be used to correct packer tests for cross-connection effects. A pressure response observed in the open-hole segment above and/or below the packers isolating a test interval during a hydraulic test indicates short-circuiting of water from the injection interval through the vertically connected fracture network to the open-hole segments, resulting in the overestimation of T. A method is presented using blended head concepts to minimize this error using a trial-and-error procedure to determine the short-circuiting flow rate to account for the head conditions in the open-hole segments during each hydraulic test. Observed differences between the measured head and the calculated blended head in the open-hole segments above and below the test interval are attributed to cross-connection effects around the 1-m-long packers. The head and corrected T values determined from packer tests are used to estimate the flow in and out of the open hole at each of the intervals tested for assessing the cross-connection effects under open borehole conditions. Understanding open-hole flow dynamics gives insight about the potential for vertical cross connection of chemical constituents caused by the open hole.

Résumé

Les forages en trou nu en roche fracturée connectent souvent entre elles des fractures de différente charge hydraulique, ce qui cause un écoulement vertical entre ces fractures dans la colonne d’eau. Cette connexion peut biaiser potentiellement les valeurs de transmissivité (T) obtenues à partir de tests entre packers. Cette étude démontre comment des mesures de la charge hydraulique composite dans les segments de forage en trou nu situés en dessus et en dessous de l’intervalle testé entre packers peuvent être utilisées pour corriger les essais entre packers des effets de connexion entre fractures. Une variation de pression observée dans le segment en trou nu situé au-dessus et/ou au-dessous des packers isolant un intervalle testé pendant un test hydraulique indique un court-circuit d’eau depuis l’intervalle d’injection vers des segments en trou nu, à travers le réseau de fractures connecté verticalement, ce qui conduit à surestimer T. Une méthode est présentée utilisant les concepts de charge composite pour minimiser cette erreur au moyen d’une procédure par essais et erreur pour déterminer le débit en court-circuit afin de prendre en compte les conditions de charge dans les segments en trou nu pendant chaque test hydraulique. Les différences observées entre les charges mesurées et la charge composite calculée dans les segments en trou nu au-dessus et au-dessous de l’intervalle testé sont attribuées aux effets de connexion autour des packers de 1 m de long. Les valeurs de charge et de T corrigée déterminées à partir des tests entre packers sont utilisées pour estimer les débits entrant et sortant par le trou nu au sein de chacun des intervalles testés afin d’évaluer les effets de connexion en conditions de forage en trou nu. La compréhension de la dynamique des écoulements en trou nu donne un aperçu du potentiel des interconnexions verticales, causé par les forages en trou nu, vis-à-vis des constituants chimiques.

Resumen

Los pozos abiertos en rocas fracturadas a menudo conectan fracturas con diferentes cargas hidráulicas y las diferencias de carga entre estas fracturas producen un flujo vertical en la columna de agua. Esta conexión cruzada tiene el potencial para sesgar los valores de transmisividad (T) obtenidos a partir de ensayos de straddle-packer. Este estudio demuestra como las medidas combinadas de carga en los segmentos del pozo abierto por encima y por debajo del intervalo de la prueba de straddle-packer pueden ser utilizados para corregir las pruebas de packer en relación con los efectos de la conexión cruzada. Una respuesta de presión observada en el segmento del pozo abierto por encima y/o por debajo del aislamiento de los packers de un intervalo de prueba durante un ensayo hidráulico indica un cortocircuito de agua desde el intervalo de inyección a través de la red de fracturas verticalmente conectadas a los segmentos del pozo abierto, lo cual resulta en la sobrestimación de T. Se presenta un método usando conceptos de carga combinada para minimizar este error utilizando un procedimiento de prueba y error para determinar el caudal del cortocircuito para dar cuenta de las condiciones de carga en los segmentos del pozo abierto durante cada ensayo hidráulico. Las diferencias observadas entre la carga medida y la carga combinada calculada en los segmentos del pozo abierto por encima y por debajo del intervalo de prueba se atribuyen a efectos de conexión cruzada alrededor de 1 m de longitud de los packers. Los valores correctos de T determinados a partir de las pruebas de packer se utilizan para estimar el flujo hacia adentro y hacia afuera del pozo abierto en cada uno de los intervalos testeados para evaluar los efectos de conexión cruzada bajo condiciones de pozos abiertos. Entender la dinámica de flujo del pozo abierto otorga un mejor conocimiento acerca de la potencial conexión transversal vertical de componentes químicos provocados por el pozo abierto.

摘要

断裂岩层中开放钻孔常常交叉连接着不同水头的断裂,这些断裂之间的水头差可引起水体的垂向水流。这种交叉连通能使通过隔离式压水试验获得的导水系数(T)产生偏差的可能性。本项研究展示了开放钻孔隔离式压水试验之上和之下段内混合水头测量结果是怎样用来校正压水试验中交叉连通带来的影响。开放钻孔中隔离试验间隔的封隔器之上或之下的段内所观测到的压力响应表明从注入段通过垂直断裂网络流到开放钻孔的水有短路,这样就导致高估了T。采用混合水头概念论述了利用反复试验法程序使误差最小的方法,反复试验法程序可确定每个水力试验期间说明开放钻孔段内水头条件的短路水流量。开放钻孔测试间隔之上和之下段内的测量水头和计算的混合水头之间观测到的差异归因于一米长的封隔器周围的交叉连通影响。通过压水试验确定的水头和校正的T值用来估测每个间隔点进出开放钻孔的流量,用于评估开放钻孔条件下交叉连通影响。了解开放钻孔水流动力特征对于认识开放钻孔引起的化学组分垂直交叉连通的可能性有重要的启发意义。

Resumo

Poços tubulares abertos em rochas fraturadas frequentemente interconectam fraturas com diferentes cargas hidráulicas e a diferença de carga entre estas fraturas causa fluxo vertical na coluna de água. Este fluxo cruzado tem a capacidade de influenciar os valores de transmissividades (T) obtidos com testes de obturadores. Este estudo demonstra como as medidas da carga hidráulica média nos segmentos do poço aberto acima e abaixo do intervalo de teste obturado pode ser usado para corrigir testes com obturadores dos efeitos do fluxo cruzado. A variação da pressão observada na seção aberta do poço acima e/ou abaixo do intervalo de teste durante um teste hidráulico indica curto circuito de água entre o intervalo de injeção através da rede de fraturas verticais e as seções abertas do poço, resultando na superestimação de T. Um método é apresentado usando os conceitos de carga hidráulicas médias para minimizar este erro usando um procedimento de tentativa e erro para determinar a vazão do curto circuito para considerar as condições da carga hidráulica nos segmentos de poço aberto em cada teste hidráulico. As diferenças observadas entre as cargas hidráulicas medidas e a carga hidráulica média calculada nas seções de poço aberto acima e abaixo do intervalo de teste são atribuídas aos efeitos de fluxo interconectado ao redor dos obturadores de 1 m de comprimento. As cargas hidráulicas e valores de T corrigidos determinados por testes com obturadores são usados para estimar o fluxo dentro e fora do poço aberto em cada intervalo testado para avaliar os efeitos de fluxo cruzado em condições de poço aberto. O entendimento da dinâmica do fluxo em poços abertos permite a compreensão sobre o potencial fluxo vertical cruzado de constituintes químicos causados pelo poço aberto

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirtharaj ES, Ioannidis MA, Parker B, Tsakiroglou CD (2011) Statistical synthesis of imaging and porosimetry data for the characterization of microstructure and transport properties of sandstones. Trans Por Med 86(1):135–154

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw Hill, New York, 567 pp

    Google Scholar 

  • Bennett GD, Patten EP (1960) Borehole geophysical methods for analyzing specific capacity of multiaquifer wells. US Geological Survey. Water-Supply. Paper 1536-A

  • Bennett GD, Patten EP (1962) Constant-head pumping test of a multiaquifer well to determine characteristics of individual aquifers. US Geological Survey. Water-Supply. Paper 1536-G

  • Bradbury KR, Gotkowitz MB, Hart DJ (2007) Evaluation of a bedrock aquitard for regional and local scale groundwater flow, three-dimensional geologic mapping for groundwater applications. Annual Meeting Geological Society of America, Denver, CO, October 2007

  • Brassington FC (1992) Measurements of head variations within observation boreholes and their implications for groundwater monitoring. Water Environ J 6.3(1992):91–100

  • Cherry JA, Parker BL, Keller C (2007) A new depth-discrete multilevel monitoring approach for fractured rock. Groundwater Monitor Remed 27(2):57–70

    Article  Google Scholar 

  • Church PE, Granato GE (1996) Bias in ground‐water data caused by well‐bore flow in long‐screen wells. Ground Water 34(2):262–273

    Article  Google Scholar 

  • Cilona A, Aydin A, Johnson NM (2014) Permeability of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution in the Chatsworth Formation California, USA. Hydrogeol J 23(2):405–419

  • Day‐Lewis FD, Johnson CD, Paillet FL, Halford KJ (2011) A computer program for flow‐log analysis of single holes (FLASH). Groundwater 49(6):926–931

    Article  Google Scholar 

  • Dibblee TW Jr (1992) Geology and inferred tectonics of the Pinto Mountain fault, eastern transverse ranges, California. San Bernardino Count Muse Assoc Spec Pub 92–1:28–31

    Google Scholar 

  • Doe T, Remer J (1980) Analysis of constant-head well tests in nonporous fractured rock. In: Third Invitational Well-Testing Symposium: Well Testing in Low Permeability Environments. Berkeley, CA, March 1980, pp 84–89

  • Gale JE (1975) A numerical field and laboratory study of flow in rocks with deformable fractures. PhD Thesis, University of California Berkeley, USA

  • Gale JE, Rouleau A, Witherspoon P (1982) Hydrogeologic characteristics of a fractured granite. In: AWRC Conference on Groundwater in Fractured Rock. Canberra, Australia, 31 August–3 September 1982, pp 95–108

  • Gellasch CA, Bradbury KR, Hart DJ, Bahr JM (2013) Characterization of fracture connectivity in a siliciclastic bedrock aquifer near a public supply well (Wisconsin, USA). Hydrogeol J 21(2):383–399

    Article  Google Scholar 

  • Haimson BC, Doe TW (1983) State of stress, permeability, and fractures in the Precambrian granite of northern Illinois. J Geophys Res 88(B):7355–7371

    Article  Google Scholar 

  • Hess AE (1986) Identifying hydraulically conductive fractures with a slow-velocity borehole flowmeter. Can Geotech J 23(1):69–78

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Bulletin No. 36, Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg, MS

  • Keller C, Cherry JA, Parker BL (2013) New method for continuous transmissivity profiling in fractured rock. Groundwater. doi:10.1111/gwat.12064

    Google Scholar 

  • Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross‐formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882

    Article  Google Scholar 

  • Lapcevic PA, Novakowski KS, Sudicky EA (1999) Groundwater flow and solute transport in fractured media. In: Delleur JW (ed) The Handbook of Groundwater Engineering. CRC Press, Boca Raton, Florida

  • Maini YNT (1971) In situ hydraulic parameters in jointed rock: their measurement and interpretation. PhD Thesis, University of London, Imperial College of Science and Technology, UK

  • Meyer JR, Parker BL, Cherry JA (2008) Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56(1):27–44

    Article  Google Scholar 

  • Meyer JR, Parker BL, Cherry JA (2014) Characteristics of high resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. J Hydrol 517:493–507

  • Michalski A, Klepp GM (1990) Characterization of transmissive fractures by simple tracing of in‐well flow. Ground Water 28(2):191–198

    Article  Google Scholar 

  • Novakowski KS, Bickerton GS (1997) Borehole measurement of the hydraulic properties of low-permeability rock. Water Resour Res 33(11):2509–2517

    Article  Google Scholar 

  • Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34(5):997–1010

    Article  Google Scholar 

  • Paillet FL (2000) A field technique for estimating aquifer parameters using flow log data. Ground Water 38(4):510–521

    Article  Google Scholar 

  • Paillet FL (2001) Hydraulic head applications of flow logs in the study of heterogeneous aquifers. Ground Water 39(5):667–675

    Article  Google Scholar 

  • Paillet FL (2004) Borehole flowmeter applications in irregular and large-diameter boreholes. J Appl Geophys 55(1):39–59

    Article  Google Scholar 

  • Paillet FL, Hess AE, Cheng CH, Hardin EL (1987) Characterization of fracture permeability with high‐resolution vertical flow measurements during borehole pumping. Groundwater 25(1):28–40

    Article  Google Scholar 

  • Parker BL, Cherry JA, Swanson BJ (2006) A multilevel system for high-resolution monitoring in rotasonic boreholes. Groundwater Monitor Remed 26(4):57–73

    Article  Google Scholar 

  • Pehme PE, Greenhouse JP, Parker BL (2007) The active line source temperature logging technique and its application in fractured rock hydrogeology. J Environ Eng Geophys 12(4):307–322

    Article  Google Scholar 

  • Pehme PE, Parker BL, Cherry JA, Greenhouse JP (2009) Improved resolution of ambient flow through fractured rock with temperature logs. Ground Water 48(2):191–205

    Article  Google Scholar 

  • Pehme PE, Parker BL, Cherry JA, Molson JW, Greenhouse JP (2013) Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes. J Hydrol 484:1–15

    Article  Google Scholar 

  • Pitrak M, Mares S, Kobr M (2007) A simple borehole dilution technique in measuring horizontal ground water flow. Groundwater 45(1):89–92

    Article  Google Scholar 

  • Price M, Williams A (1993) The influence of unlined boreholes on groundwater chemistry: a comparative study using pore-water extraction and packer sampling. J Inst Water Environ Manag 7(6):651–659

    Article  Google Scholar 

  • Quinn PM, Cherry JA, Parker BL (2011) Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. Water Resour Res 47(9):W09533

  • Quinn PM, Cherry JA, Parker BL (2012) Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured rock boreholes. Hydrogeol J. doi:10.1007/s10040-012-0893-8

    Google Scholar 

  • Quinn PM, Parker BL, Cherry JA (2013) Validation of non-Darcian flow effects in slug tests conducted in fractured rock boreholes. J Hydrol 486:505–518

    Article  Google Scholar 

  • Reilly TE, Lehn FO, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115.2:270–276

  • Rushton KR, Howard KWF (1982) The unreliability of open observation boreholes in unconfined aquifer pumping tests. Ground Water 20(5):546–550

    Article  Google Scholar 

  • Shapiro AM (2002) Cautions and suggestions for geochemical sampling in fractured rock. Ground Water Monitor Remed 22(3):151–164

    Article  Google Scholar 

  • Silliman S, Higgins D (1990) An analytical solution for steady-state flow between aquifers through an open well. Groundwater 28(2):184–190

    Article  Google Scholar 

  • Sokol D (1963) Position and fluctuations of water level in wells perforated in more than one aquifer. J Geophys Res 68(4):1079–1080

    Article  Google Scholar 

  • Sterling SN, Parker BL, Cherry JA, Williams JH, Lane JW Jr, Haeni FP (2005) Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone. Ground Water 43(4):557–573

    Article  Google Scholar 

  • Tsang, C‐F, Hufschmied P, Hale F (1990) Determination of fracture inflow parameters with a borehole fluid conductivity logging method. Water Resour Res 26(4):561–578

  • West LJ, Odling NE (2007) Characterization of a multilayer aquifer using open well dilution tests. Groundwater 45(1):74–84

    Article  Google Scholar 

  • Williams JH, Conger RW (1990) Preliminary delineation of contaminated water‐bearing fractures intersected by open‐hole bedrock wells. Ground Water Monitor Remed 10(4):118–126

    Article  Google Scholar 

  • Williams JH, Paillet FL (2002) Using flowmeter pulse tests to define hydraulic connections in the subsurface: a fractured shale example. J Hydrol 265(1):100–117

    Article  Google Scholar 

  • Zeigler TW (1976) Determination of rock mass permeability. No. WES-TR-S-76-2, Waterways Experiment Station, US Army Corps Eng., Vicksburg, MS

  • Zinn BA, Konikow LF (2007) Effects of intraborehole flow on groundwater age distribution. Hydrogeol J 15(4):633–643

    Article  Google Scholar 

Download references

Acknowledgements

Many individuals and companies helped in the data collection/analysis necessary for this work to be completed, including geophysical logging conducted on the three holes in this study by Dr. Pete Pehme and Ryan Kroeker from the University of Guelph (Canada), and rock core logging and sampling conducted by Stone Environmental. We would also like to thank the lead reviewer of this paper for his astute insights and suggestions that have greatly improved this manuscript. Funding for this investigation was provided by the Boeing Company (Canoga Park, CA) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patryk Quinn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, P., Parker, B.L. & Cherry, J.A. Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes. Hydrogeol J 24, 59–77 (2016). https://doi.org/10.1007/s10040-015-1326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1326-2

Keywords

Navigation