Skip to main content
Log in

Analysis of groundwater-level fluctuation in a coastal confined aquifer induced by sea-level variation

Analyse des fluctuations piézométriques d’un aquifère captif induites par les variations du niveau marin

Análisis de la fluctuación de niveles de agua subterránea en un acuífero costero confinado inducidos por la variación del nivel del mar

海水位变化影响下滨海承压含水层地下水位波动情况解析

Análise da variação piezométrica das águas subterrâneas de um aquífero costeiro confinado, induzida pela variação do nível do mar

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater responses to tide fluctuations in different hydrogeological situations have been investigated for many years. Various solutions have been derived using the assumption that tides are composed of sinusoidal components, neglecting non-periodic variables. This approach has resulted in the introduction of some inaccuracy in predictions of groundwater responses to sea-level variation. To resolve this problem, this study used the Fourier sine transform method to derive an analytical solution based on the measured sea-level boundary. Compared with an analytical solution based on a sinusoidal assumption and a numerical solution generated by MODFLOW, this solution provided better performance in groundwater-level prediction in a coastal confined aquifer in Zhuhai City, China. The hydrogeological parameters estimated by the three aforementioned methods fitted well with those estimated by field surveys and pumping tests. The introduced analytical solution not only reflects the physical mechanisms of tide-induced groundwater-level fluctuation, but also reveals the non-periodic fluctuation of groundwater level caused by sea-level variation. This solution may also be used to evaluate groundwater responses to random mechanical stresses.

Résumé

Les réponses piézométriques aux fluctuations du niveau marin dues à la marée dans différents contextes hydrogéologiques ont été étudiées depuis de nombreuses années. Différentes solutions ont été décrites à partir de l’hypothèse que les marées étaient constituées de composantes sinusoïdales, négligeant les variables non périodiques. L’utilisation de cette approche a conduit à introduire certaines incertitudes dans les prévisions des réponses piézométriques vis-à-vis des variations du niveau marin. Afin de résoudre ce problème, l’étude a eu recours à la méthode de la transformée de Fourier afin de définir une solution analytique intégrant la limite mesurée du niveau marin. Cette solution comparée à une solution analytique construite avec l’hypothèse de la sinusoïdale et à une solution numérique générée à l’aide de MODFLOW a permis de montrer qu’elle fournit une meilleure performance pour la prévision des niveaux piézométriques d’un aquifère côtier captif, l’aquifère de la ville de Zhuhai en Chine. Les paramètres hydrogéologiques estimés à l’aide des trois méthodes indiquées précédemment sont cohérents avec ceux estimés par des reconnaissances de terrain et des essais de pompage. La solution analytique introduite ne reflète pas seulement les mécanismes physiques des fluctuations piézométriques induites par les marées, mais met aussi en évidence la variation non périodique des niveaux d’eau souterraine causée par les fluctuations du niveau marin. La solution peut également être utilisée pour évaluer les réponses piézométriques à des contraintes mécaniques aléatoires.

Resumen

Las respuestas del agua subterránea a las fluctuaciones de la marea en diferentes situaciones hidrogeológicas han sido investigadas por muchos años. Varias soluciones se han desarrollado usando el supuesto que las mareas están compuestas por componentes sinusoidales, dejando de lado variables no periódicas. Este enfoque ha dado lugar a la introducción de ciertas inexactitudes en las predicciones de las respuestas de las aguas subterráneas a la variación del nivel del mar. Para resolver este problema, este estudio usó el método de la transformada del seno de Fourier para desarrollar una solución analítica basada en el límite del nivel del mar medido. Comparado con una solución analítica basada en un supuesto sinusoidal y una solución numérica generada por MODFLOW, esta solución provee un mejor desempeño en la predicción del nivel de agua subterránea en un acuífero confinado costero en Zhuhai City, China. Los parámetros hidrogeológicos estimados por los tres métodos arriba mencionados ajustan bien con aquellos estimados por relevamientos de campo y ensayos de bombeo. La solución analítica introducida no solo refleja los mecanismos físicos de la fluctuación del nivel de agua subterránea inducida por la marea, sino también revela las fluctuaciones no periódicas del agua subterránea causada por la variación del nivel del mar. Esta solución también puede ser usada para evaluar las respuestas del agua subterránea a tensiones mecánicas aleatorias.

摘要

关于在不同水文地质条件下潮汐变化引起地下水位波动的研究已进行多年。针对这个问题的不同解析解都是建立在潮汐水位是由正弦成分组成的假设上,这个假设忽略了海水位中的非周期变化成分。因此,建立在这个假设上的解析解可能会引起对地下水位预测的不准确性。为了解决这个问题,本文的研究使用傅里叶正弦变换的方法,推导出一个以实测海水位为边界条件的解析解。将这个解析解与建立在正弦边界假定的解析解以及建立在MODFLOW基础上的数值解应用于中国珠海沿海承压含水层地下水位波动情况的预测上,结果表明本文推导出的解析解预测效果较好。上述三种方法在模拟过程中率定的水文地质参数与实地调研和抽水试验得到的结果比较符合。新的解析解不仅可以很好的反应潮汐水位波动影响下地下水位波动现象的物理机制,还可以揭示地下水位中由海水波动引起的非周期变化。这个解析解可能用于将来对随机动力引起下的地下水水位波动的研究中。

Resumo

A análise da influência das marés na variação dos níveis piezométricos em aquíferos costeiros com diferentes características hidrogeológicas tem sido objeto de estudo por vários investigadores. As várias soluções apresentadas assumem que as marés são constituídas por componentes sinusoidais, negligenciando as variáveis não periódicas. Os resultados obtidos através desta aproximação introduziram alguns erros na previsão da variação dos níveis piezométricos induzidos pela variação das marés. No sentido de dar um contributo para a resolução deste problema, este estudo utilizou o método da derivada do seno da Transformada de Fourier para encontrar uma solução analítica que melhor represente a variação do nível do mar medido junto à costa. Comparando esta solução analítica baseada na hipótese da sinusoidal com a solução numérica gerada pelo modelo MODFLOW, obtiveram-se melhores resultados com esta solução na previsão dos níveis de águas subterrâneas no aquífero costeiro da Cidade de Zhuhai, na China. Os parâmetros hidrogeológicos obtidos através dos três métodos acima mencionados ajustaram-se bem aos estimados em medições de campo e ensaios de bombagem. A solução analítica introduzida reflete não só os mecanismos físicos da variação da piezometria induzida pelas marés, como revela também a flutuação não-periódica das águas subterrâneas, causada pelas variações do nível do mar. Esta solução também pode ser utilizada para avaliação da resposta das águas subterrâneas a pressões mecânicas aleatórias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Society of Civil Engineers Task Group, Committee on Hydrology Handbook (1996) Hydrology handbook, ASCE Publications, Reston, VA

  • Ataie-Ashitani B, Volker RE, Lockington DA (2001) Tidal effects on groundwater dynamics in unconfined aquifers. Hydrol Processes 15:655–669

    Article  Google Scholar 

  • Bracewell RN (1978) The Fourier transform and its application. McGraw-Hill, New York

    Google Scholar 

  • Brockwell PJ, Davis RA (2006) Time Series: Theory and Methods. Springer-Verlag New York Inc, New York

  • Calvache ML, Bosch PA (1994) Modeling the effects of salt-water intrusion dynamics for a coastal karstified block connected to a detrital aquifer. Ground Water 32:767–777

    Article  Google Scholar 

  • Carr PA (1969) Salt water intrusion in Prince Edward Island. Can J Earth Sci 6(1):63–74

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  • Chen JY, Taniguchi M, Liu GQ, Miyaoka K et al (2007) Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeol J 15(8):1605–1614

    Article  Google Scholar 

  • Chiang WH, Kinzelbach W (1998) Processing MODFLOW: a simulation system for modeling groundwater flow and pollution. Hamburgh, Zurich, Switzerland

  • Federal Emergency Management Agency and Federal Insurance Administration (1991) Projected impact of relative sea level rise on the National Flood Insurance Program. Originally published October 1991 by the Federal Emergency Management Agency, Federal Insurance Administration, FEMA, Washington, DC

  • Guo QN, Li HL, Boufadel MC et al (2007) Tide-induced groundwater head fluctuation in coastal multi-layered aquifer systems with a submarine outlet-capping. Adv Water Resour 30:1746–1755

    Article  Google Scholar 

  • Guo HP, Jiao JJ, Li HL (2010) Groundwater response to tidal fluctuation in a two-zone aquifer. J Hydrol 381:364–371

    Article  Google Scholar 

  • Jacob CE (1950) Flow of groundwater. In: Engineering hydraulics. Wiley, New York

    Google Scholar 

  • Jiao JJ, Li HL (2004) Breathing of coastal vadose zone induced by sea level fluctuations. Geophys Res. doi:10.1029/2004GL019572

  • Jiao JJ, Tang ZH (1999) An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour Res 35(3):747–751

    Article  Google Scholar 

  • Knight JH, Rassam DW (2007) Groundwater head responses due to random stream stage fluctuations using basis splines. Water Resour Res. doi:10.1029/2006WR005155

  • Li HL, Boufadel M (2010) Long-term persistence of oil from the Exxon Valdez spill in two-layer breaches. Nat Geosci 3(2):96–99

    Article  Google Scholar 

  • Li HL, Boufadel M (2011) A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil. Nat Mar Pollut Bull 62(6):1261–1269

    Article  Google Scholar 

  • Li HL, Jiao JJ (2002) Tidal groundwater fluctuations in L-shaped leaky coastal aquifer system. J Hydrol 268:234–243

    Article  Google Scholar 

  • Li HL, Jiao JJ (2003a) Review of analytical studies of tidal groundwater flow in coastal aquifer systems. Proceedings of International Symposium on Water Resources and the Urban Environment, November, 2003, Wuhan, P. R. China, pp 86–91

  • Li HL, Jiao JJ (2003b) Tide-induced seawater–groundwater circulation in a multi-layered coastal leaky aquifer system. J Hydrol 274:211–224

    Article  Google Scholar 

  • Li HL, Jiao JJ (2005) One-dimensional airflow in unsaturated zone induced by periodic water table fluctuation. Water Resour Res. doi:10.1029/2004WR003916

  • Li HL, Li L, Lockington D (2005) Aeration for plant root respiration in a tidal marsh. Water Resource Research. doi:06010.01029/02004WR003759.

  • Li HL, Jiao JJ, Luk M et al (2002) Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resour Res 38(3). doi:10.1029/2001WR000556

  • Li HL, Zhao QH, Boufadel MC et al (2007) A universal nutrient application strategy for the bioremediation of oil polluted beaches. Mar Pollut Bull 54:1146–1161

    Article  Google Scholar 

  • Li HL, Sun PP, Chen S et al (2009) A falling-head method for measuring intertidal sediment hydraulic conductivity. Ground Water 48(2):206–211

    Article  Google Scholar 

  • Li L, Barry DA, Cunningham C et al (2000) A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Adv Water Resour 23:825–833

    Article  Google Scholar 

  • Li L, Cartwright N, Nielsen P et al (2004) Response of coastal groundwater table to offshore storms. China Ocean Eng 18(3):423–431

    Google Scholar 

  • Merritt ML (2004) Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry counties, Florida. US Geol Surv Water Resour Invest Rep 03-4267

  • Morris DA, Johnson AI (1967) Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey. US Geol Surv Water Suppl Pap 1839-D, 42 pp

  • Shanxi Engineering and Survey Designing Institute (2005) Report on completion of observed wells in Zhuhai Campus of Sun Yet-sun University, China (n Chinese). Shanxi Engineering and Survey Designing Institute, Shanxi, China

  • Tang ZH, Jiao JJ (2001) A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water. Hydrol Proc 15:573–585

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE et al (2002) Investigation of submarine groundwater discharge. Hydrol Proc 16:2115–2129

    Article  Google Scholar 

  • Uchiyama Y, Nadaoka K, Rolke P et al (2000) Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach. Water Resour Res 36(6):1467–1479

    Article  Google Scholar 

  • Vander Kamp G (1972) Tidal fluctuations in a confined aquifer extending under the sea. 24th International Geological Congress, August-September 1972, Montreal Section 11, pp 101–106

  • Xia YQ, Li HL, Boufadel MC et al (2010) Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach. Water Resour Res 46. doi:10.1029/2010WR009179

Download references

Acknowledgments

We thank J. Shimada of Kumamoto University, J. J. of Hong Kong University, H. Xiaolan, X. Lichun, Z. Kunrong, and Y. Xueyun for comments and discussions during the preparation of this article. We also thank all of the crew members in the hydrological-cycle monitoring basement in Zhuhai City for the provision of data used in this research. Portions of this study were supported by research on groundwater–seawater interaction sponsored by the Chinese National Science Foundation (grant no. 40571027), Innovation and Application Research Fund from Water Department of Guangdong Province (2009–2011), and Guangdong Province Science Foundation (grant no. 9251027501000021). Finally, we sincerely thank the editors and reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyao Chen.

Additional information

The Research of Groundwater-seawater interaction is sponsored by the Chinese National Science Foundation and Guangdong Province Science Foundation.

Appendix

Appendix

Deviation of Eq. (7)

In Eq. (3), it was assumed that the piezometric head of groundwater at x → ∞ was constantly zero and that the derivative of groundwater head to x at x → ∞ was zero, which means

$$ \frac{{\partial h}}{{\partial x}}\left( { + \infty, t} \right) = 0. $$
(8)

Using the Fourier sine transform at distance x, the substitution of Eqs. (2), (3), and (8) into Eq. (1) and \( h\left( {x,0} \right) = 0 \) produces the following transformations:

$$ \frac{{\partial {U_s}}}{{\partial t}} = D( - {\omega^2}{U_s} + \omega g(t))\,,\;{\text{and}} $$
(9)
$$ {U_s}(\omega, 0) = 0\,, $$
(10)

where ω is the frequency variable, \( {U_s}(\omega, t) = {F_s}\left[ {h(x,t)} \right] = \int_0^{{ + \infty }} {h\left( {x,t} \right)\sin \left( {\omega x} \right)} dx \) and \( D = \frac{T}{S}\,. \)

Then U s (ω, t) can be derived as follows:

$$ {U_s}(\omega, t) = D\int_0^t {\omega g(\gamma )} \exp ( - D{\omega^2}(t - \gamma ))d\gamma \,. $$
(11)

Equation (7) was derived after the inverse Fourier sine transformation of Eq. (11), the details of which are presented below:

$$ \begin{gathered} h(x,t) = \frac{{2D}}{\pi }\int_0^{{ + \infty }} {\sin (\omega x)} \int_0^t {\omega g(\gamma )} \exp ( - D{\omega^2}(t - \gamma ))d\gamma d\omega \hfill \\ = \frac{{2D}}{\pi }\int_0^t {g(\gamma )} \int_0^{{ + \infty }} {\omega \sin (\omega x)} \exp ( - D{\omega^2}(t - \gamma ))d\omega d\gamma \hfill \\ = \frac{{2D}}{\pi }\int_0^t {g(\gamma )} \int_0^{{ + \infty }} {( - \frac{1}{{2D(t - \gamma )}})\sin (\omega x)} d(\exp ( - D{\omega^2}(t - \gamma )))d\gamma \hfill \\ = \frac{{2D}}{\pi }\int_0^t {g(\gamma )} \frac{x}{{2D(t - \gamma )}}\int_0^{{ + \infty }} {\cos (\omega x)} \exp ( - D{\omega^2}(t - \gamma ))d\omega d\gamma \hfill \\ = \frac{{2D}}{\pi }\int_0^t {g(\gamma )} \frac{x}{{2D(t - \gamma )}}\int_0^{{ + \infty }} {\frac{{\exp (i\omega x) + \exp ( - i\omega x)}}{2}} \exp ( - D{\omega^2}(t - \gamma ))d\omega d\gamma \hfill \\ = \frac{{2D}}{\pi }\int_0^t {g(\gamma )} \frac{x}{{4D(t - \gamma )}}\exp ( - \frac{{{x^2}}}{{4D(t - \gamma )}})\int_0^{{ + \infty }} {(\exp ( - {{(\sqrt {{(t - \gamma )D}} \omega - \sqrt {{\frac{1}{{(t - \gamma )D}}}} \frac{{ix}}{2})}^2}) + \exp ( - {{(\sqrt {{(t - \gamma )D}} \omega + \sqrt {{\frac{1}{{(t - \gamma )D}}}} \frac{{ix}}{2})}^2})} )d\omega d\gamma \hfill \\ = \frac{2}{\pi }\int_0^t {g(\gamma )} \frac{{{{(1/D)}^{{ \frac{1}{2} }}}x\sqrt {\pi } }}{{4{{(t - \gamma )}^{{ \frac{3}{2} }}}}}\exp ( - \frac{{{x^2}}}{{4D(t - \gamma )}})d\gamma \hfill \\ = \frac{{{{(1/D)}^{{ \frac{1}{2} }}}x}}{{2\sqrt {\pi } }}\int_0^t {g(\gamma )} {(t - \gamma )^{{ - \frac{3}{2} }}}\exp ( - \frac{{{x^2}}}{{4D(t - \gamma )}})d\gamma \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Chen, J., Fu, C. et al. Analysis of groundwater-level fluctuation in a coastal confined aquifer induced by sea-level variation. Hydrogeol J 20, 719–726 (2012). https://doi.org/10.1007/s10040-012-0838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0838-2

Keywords

Navigation