Skip to main content

Advertisement

Log in

Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in southeast Australia

Contraintes géochimiques et isotopiques concernant l’interaction entre lacs salés et eau souterraine en Australie du Sud-Est

Limitaciones isotópicas y geoquímicas en la interacción entre lagos salinos y aguas subterráneas en el sudeste de Australia

澳大利亚东南部盐湖与地下水相互作用的地球化学与同位素约束

Constrangimentos geoquímicos e isotópicos na interacção entre lagos salinos e água subterrânea no sudeste da Austrália

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Major ion and stable isotope geochemistry allow groundwater/surface-water interaction associated with saline to hypersaline lakes from the Willaura region of Australia to be understood. Ephemeral lakes lie above the water table and locally contain saline water (total dissolved solids, TDS, contents up to 119,000 mg/L). Saline lakes that lack halite crusts and which have Cl/Br ratios similar to local surface water and groundwater are throughflow lakes with high relative rates of groundwater outflows. Permanent hypersaline lakes contain brines with TDS contents of up to 280,000 mg/L and low Cl/Br ratios due to the formation of halite in evaporite crusts. These lakes are throughflow lakes with relatively low throughflow rates relative to evaporation or terminal discharge lakes. Variations in stable isotope and major ion geochemistry show that the hypersaline lakes undergo seasonal cycles of mineral dissolution and precipitation driven by the influx of surface water and evaporation. Despite the generation of highly saline brines in these lakes, leakage from the adjacent ephemeral lakes or saline throughflow lakes that lack evaporite crusts is mainly responsible for the high salinity of shallow groundwater in this region.

Résumé

La géochimie des ions majeurs et des isotopes stables permet la compréhension de l’interaction eau souterraine/eau de surface associée aux lacs salés et hypersalés de la région de Willaura en Australie. Des lacs temporaires s’étendent au-dessus de la surface piézométrique et contiennent localement de l’eau salée ( résidu sec atteignant 119,000 mg/L). Les lacs salés qui sont dépourvus d’encroûtements d’halite et qui ont des rapports Cl/Br similaires à ceux de l’eau de surface et de l’eau souterraine locales sont des lacs qui s’écoulent avec des proportions relativement élevées d’apports d’eau souterraine. Les lacs hypersalés permanents contiennent des saumures avec des résidus secs atteignant 280,000 mg/L et de faibles rapports Cl/Br dus à formation d’halte dans des encroûtements évaporitiques. Ces lacs sont des lacs qui s’écoulent en ayant des taux de transit relativement bas par rapport à l’évaporation ou aux lacs de vidange finale. Les variations dans la géochimie des isotopes stables et des ions majeurs montrent que les lacs hypersalés sont soumis à des cycles saisonniers de dissolution et de précipitation minérales provoquée par l’apport d’eau de surface et l’évaporation. En dépit de la formation de saumures à salinité élevée dans ces lacs, le drainage des lacs temporaires adjacents ou l’écoulement des lacs salés qui sont dépourvus d’encroûtements d’évaporites sont responsables pour l’essentiel de la salinité élevée de l’aquifère peu profond dans cette région.

Resumen

La geoquímica de iones mayoritarios y de isótopos estables permite entender la interacción de aguas subterráneas/aguas superficiales asociada con los lagos salinos a hipersalinos de la región de Willaura de Australia. Los lagos efímeros yacen por encima del nivel freático y contienen localmente aguas salinas (contenidos de sólidos disueltos totales, TDS, hasta 119,000 mg/L). Los lagos salinos que carecen de costras de halita y que tienen una relación Cl/Br similar al agua local superficial y al agua subterránea son lagos subsuperficiales con ritmos relativamente altos de flujo saliente de aguas subterráneas. Los lagos hipersalinos permanentes contienen salmueras con contenidos de TDS de hasta 280,000 mg/L y baja relación Cl/Br debido a la formación de halita en costras de evaporitas. Estos lagos son lagos subsuperficiales con ritmos relativamente bajos de flujo subsuperficial relacionados con la evaporación o la descarga terminal de los lagos. Las variaciones de los isótopos estables y iones mayoritarios muestra que los lagos hipersalinos experimentan ciclos estacionales de disolución mineral y precipitación forzados por la entrada de agua superficial y la evaporación. A pesar de la generación de salmueras altamente salinas de estos lagos, las pérdidas provenientes de lagos efímeros adyacentes y lagos subsuperficiales salinos que carecen de costras de evaporitas es el principal responsable de la alta salinidad del agua subterránea somera en esta región.

摘要

利用主要离子和稳定同位素地球化学可以探知澳大利亚 Willaura 地区与盐湖及高盐湖相关的地下水与地表水 相互作用。季节性湖泊位于地下水位以上, 局部含有咸水 (总溶解固体, TDS , 可达 119,000 mg/L ) 。缺少盐岩壳、湖水 Cl/Br 比接近当地地表水和地下水的盐湖是径流湖, 其地下水的流出量相对较大。永久性高盐湖的 TDS 可高达 280,000 mg/L , Cl/Br 比较低, 是由蒸发盐壳中石盐形成引起的。这些湖是流出量相对较低的径流湖, 与蒸发或尾闾 排泄湖有关。稳定同位素和主要离子地球化学的变化显示这些高盐湖经历了由地表水通量和蒸发驱动的季节性 矿物溶解与沉淀旋回。虽然这些湖中存在高咸水, 从相邻季节性湖或缺乏蒸发盐壳的盐分径流湖的渗漏是该地 区浅层地下水高盐度的主要原因。

Resumo

A geoquímica iónica maioritária e de isótopos estáveis permite a compreensão da interacção água subterrânea/água superficial associada a lagos salinos a hipersalinos da região de Willaura, na Austrália. Lagos efémeros encontram-se situados sobre o nível freático e contêm localmente águas salinas (concentrações de total de sólidos dissolvidos, TDS, até 119,000 mg/L). Os lagos salinos que não têm crostas de halite e que têm uma razão Cl/Br semelhante à água superficial e subterrânea local são lagos com fluxos subsuperficiais com elevados contributos de descargas subterrâneas. Os lagos hipersalinos permanentes contêm salmouras com concentrações de TDS até 280,000 mg/L e razões Cl/Br baixas, devido à formação de halite em crostas evaporíticas. Estes lagos têm fluxos subsuperficiais relativamente pequenos quando comparados com a evaporação ou com os lagos de descarga terminal. As variações na geoquímica dos isótopos estáveis e dos iões maioritários evidenciam que os lagos hipersalinos sofrem ciclos sazonais de dissolução e precipitação de minerais provocados pela entrada de água superficial e pela evaporação. Apesar da formação de salmouras altamente concentradas nestes lagos, é a drenância dos lagos efémeros adjacentes ou dos lagos salinos com fluxos subsuperficiais e com ausência de crostas evaporíticas a principal responsável pela elevada salinidade da água subterrânea freática nesta região.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allison GB, Barnes CJ (1985) Estimation of evaporation from the normally “dry” Lake Frome in South Australia. J Hydrol 78:229–242

    Google Scholar 

  • Bethke CM (2006) The Geochemists Workbench v.6.0. University of Illinois, USA

    Google Scholar 

  • Bennetts DA, Webb JA, Stone DJM, Hill DM (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J Hydrol 323:178–192

    Article  Google Scholar 

  • Bureau of Meteorology (2008) Commonwealth of Australia Bureau of Meteorology. http://www.bom.gov.au/. Cited 15 September, 2008.

  • Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231:38–56

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Tweed SO (2008) Integrating physical hydrogeology, hydrochemistry, and environmental isotopes to constrain regional groundwater flow: Southern Riverine Province, Murray Basin, Australia. In: Carrillo Rivera JJ, Ortego Guerrero MA (eds) Groundwater flow understanding: from local to regional scale. IAH Selected Papers on Hydrogeology SP12, Balkema, pp 109–132

    Google Scholar 

  • Clarke ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, USA, p 328

    Google Scholar 

  • Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297

    Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and atmosphere. In: Tongiori E (ed) Stable isotopes in oceanographic studies and palaeotemperatures. Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Dahlhaus PG, Nathan RJ, Mac. EL, Morand VJ (2000) Salinity on the southeast Dundas Tableland, Victoria. Austr J Earth Sci 47:3–11

    Article  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide in studies of potable water. Ground Water 36:338–351

    Article  Google Scholar 

  • Department of Natural Resources and Environment (1999) Ramsar wetlands, Western District, Victoria. http://www.nre.vic.gov.au/DSE/nrenpr.nsf/. Cited 12 January 2007.

  • Dutkiewicz A, Herczeg AL, Dighton JC (2000) Past changes to isotopic and solute balances in a continental playa: clues from stable isotopes of lacustrine carbonates. Chem Geol 165:309–329

    Article  Google Scholar 

  • Gammons CH, Poulson SR, Pelicori DA, Reed PJ, Roesler AJ, Petrescu EM (2005) The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA. J Hydrol 328:319–330

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: Human causes, extent, management and case studies. University of New South Wales Press, Sydney, Australia, p 526

    Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Vol.2 the terrestrial environment. Elsevier, Amsterdam, pp 113–186

    Google Scholar 

  • Herczeg AL, Lyon WB (1991) A chemical model for the evolution of Australian sodium chloride lake brines. Palaeogeogr, Palaeoclim, Palaeoecol 84:43–53

    Article  Google Scholar 

  • Herczeg AL, Barnes CJ, Macumber PG, Olley JM (1992) A stable isotope investigation of groundwater-surface water investigations at Lake Tyrrell, Victoria, Australia. Chem Geol 96:19–32

    Article  Google Scholar 

  • Herczeg AL, Dogramaci SS, Leaney FW (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Marine Freshwater Resour 52:41–52

    Article  Google Scholar 

  • Horita J (1989) Analytical aspects of stable isotopes in brines. Chem Geol, Isotope Geoscience section 79:107–112

    Article  Google Scholar 

  • Hutton JT, Leslie TI (1958) Accession of non-nitrogenous ions dissolved in rainwater to soils in Victoria. Austr J Agricultur Res 9:492–507

    Article  Google Scholar 

  • International Atomic Energy Association (2008) Global Network of Isotopes in Precipitation (GNIP), http://www-naweb.iaea.org/napc/ih/GNIP/IHS_GNIP.html. Cited 15 December 2008.

  • Jacob H, Sonntag C (1991) An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapor and precipitation at Heidelberg, Germany. Tellus 43B:291–300

    Google Scholar 

  • Jones BF, Deocampo DM (2003) Geochemistry of Saline Lakes. In: Drever JI (ed) Surface and ground water, weathering and soils. Treatise on Geochemistry, vol. 5. Elsevier, New York, pp 393–420

    Google Scholar 

  • Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes 1. The stable isotope mass balance method. Water Resour Res 26:2445–2453

    Google Scholar 

  • Macumber PG (1991) Interaction between groundwater and surface water systems in northern Victoria. Victoria Department of Conservation and Environment, Melbourne, Australia, p 345

    Google Scholar 

  • Majoube M (1971) Fractionnement en oxygene-18 et en deuterium entra l’eau et sa vapeur (Fractionation of oxygen-18 and deuterium between water and vapour). J Chimie Physique 10:1423–1436

    Google Scholar 

  • Mann BS, Nolan J (1989) Preliminary hydrogeological appraisal of the Willaura west region. Rural Water Commission Report 1989/37, Melbourne, Australia

    Google Scholar 

  • Marimuthu S, Reynolds DA, Le Gal La Salle C (2005) A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system. J Hydrol 315:93–116

    Article  Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br and K+ with halite. J Sediment Petrol 57:928–937

    Google Scholar 

  • Sanford WE, Wood WW (1991) Brine evolution and mineral deposition in hydrologically open evaporite basins. Amer J Sci 291:687–710

    Google Scholar 

  • Stuart-Smith PG, Black LP (1999) Willaura sheet 7422, Victoria. 1:100,000 Map Geological Report. Austr Geol Surv Org. Record 1999/38. Canberra, Australia

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural water. Wiley, New York, USA, p 1022

    Google Scholar 

  • Tweed S, Leblanc M, Cartwright, I. (2009) Groundwater–surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia. Journal of Hydrology, in press

  • Victorian water resources data warehouse (2008) http://www.vicwaterdata.net/vicwaterdata/home.aspx. Cited 15 December, 2008

  • Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev 58:343–365

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Andy Christie for major cation analyses, and Ben Petrides and Helen Tomkins for help with stable isotope and anion analyses. Funding for this project was provided by Monash University. Chris Gammons, Sebastien Lamontagne, Su Yonghong and an anonymous reviewer are thanked for helpful comments on various versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Cartwright.

Electronic supplementary material

ESM Table 1

Summary of groundwater geochemistry from the Willaura region (PDF 27 kb)

ESM Table 2

Summary of lake geochemistry from Willaura (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartwright, I., Hall, S., Tweed, S. et al. Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in southeast Australia. Hydrogeol J 17, 1991–2004 (2009). https://doi.org/10.1007/s10040-009-0492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0492-5

Keywords

Navigation