Skip to main content
Log in

An optical method for measuring the near-wall volume fraction in granular dispersions

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The volume fraction plays a crucial role in the dynamics of granular flows. This work is devoted to developing a novel cost-effective optical method for determining the near-wall volume fraction. By means of a numerical investigation, performed by Monte Carlo generations of mono-disperse sphere distributions under controlled illumination conditions, the stochastic relationship between the near-wall volume fraction and a measurable quantity, referred to as two-dimensional volume fraction, is figured out. A binarization algorithm is proposed for estimating the two-dimensional volume fraction from gray-scale digital images. The relation is found to be of exponential type, with parameters only depending on the angle of incidence of light. An experimental investigation is designed for implementing the proposed method to a real laboratory context. The laboratory campaign, performed on dispersions of white plastic grains immersed in different ambient fluids, enables us to validate the proposed approach. It is found that the exponential law provides results in sound agreement with experimental data. Sensitivity analyses are also performed to confirm and evaluate the robustness and the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Ann. Rev. Fluid Mech. 40(1), 1–24 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  ADS  Google Scholar 

  4. Jenkins, J.T., Berzi, D.: Kinetic theory applied to inclined flows. Granul. Matter 14(2), 79–84 (2012)

    Article  Google Scholar 

  5. Sarno, L., Carravetta, A., Martino, R., Tai, Y.-C.: Pressure coefficient in dam-break flows of dry granular matter. J. Hydraul. Eng. 139(11), 1126–1133 (2013)

    Article  Google Scholar 

  6. Sarno, L., Carravetta, A., Martino, R., Tai, Y.-C.: A two-layer depth-averaged approach to describe the regime stratification in collapses of dry granular columns. Phys. Fluids 26(10), 103303 (2014)

    Article  ADS  Google Scholar 

  7. Capart, H., Young, D.L., Zech, Y.: Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32(1), 121–135 (2002)

    Article  Google Scholar 

  8. Jesuthasan, N., Baliga, B.R., Savage, S.B.: Use of particle tracking velocimetry for measurements of granular flows: review and application—particle tracking velocimetry for granular flow measurements. KONA 24, 15–26 (2006)

    Article  Google Scholar 

  9. Lueptow, R.M., Akonur, A., Shinbrot, T.: PIV for granular flows. Exp. Fluids 28(2), 183–186 (2000)

    Article  Google Scholar 

  10. Eckart, W., Gray, J.M.N.T., Hutter, K.: Particle image velocimetry (PIV) for granular avalanches on inclined planes. In: Hutter, K., Kirchner, N., (eds.) Lecture Notes in Applied and Computational Mechanics (Vol. 11), Dynamic Response of Granular and Porous Materials Under Large Catastrophic Deformations, pp. 195–218. Springer (2003)

  11. Pudasaini, S.P., Hsiau, S.-S., Wang, Y., Hutter, K.: Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys. Fluids 17(9), 093301 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Perng, A.T.H., Capart, H., Chou, H.T.: Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt. Granul. Matter 8, 5–17 (2006)

    Article  Google Scholar 

  13. Chou, H.T., Lee, C.F.: Cross-sectional and axial flow characteristics of dry granular material in rotating drums. Granul. Matter 11(1), 13–32 (2009)

    Article  MATH  Google Scholar 

  14. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E Soft Matter 14(4), 341–365 (2004)

    Article  Google Scholar 

  15. Drake, T.G.: Structural features in granular flows. J. Geophys. Res. 95(B6), 8681–8696 (1990)

    Article  ADS  Google Scholar 

  16. Ahn, H., Brennen, C.E., Sabersky, R.H.: Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials. J. Appl. Mech. 58(3), 792–803 (1991)

    Article  ADS  Google Scholar 

  17. Mueth, D., Debregeas, G., Karczmar, G., Eng, P., Nagel, S., Jaeger, H.: Signatures of granular microstructure in dense shear flows. Nature 406(6794), 385–389 (2000)

    Article  ADS  Google Scholar 

  18. Spinewine, B., Capart, H., Larcher, M., Zech, Y.: Three-dimensional Voronoï imaging methods for the measurement of near-wall particulate flows. Exp. Fluids 34(2), 227–241 (2003)

  19. Armanini, A., Capart, H., Fraccarollo, L., Larcher, M.: Rheological stratification in experimental free-surface flows of granular–liquid mixtures. J. Fluid Mech. 532, 269–319 (2005)

    Article  ADS  MATH  Google Scholar 

  20. Armanini, A., Fraccarollo, L., Larcher, M.: Liquid–granular channel flow dynamics. Powder Technol. 182(2), 218–227 (2008)

    Article  Google Scholar 

  21. Armanini, A., Larcher, M., Fraccarollo, L.: Intermittency of rheological regimes in uniform liquid–granular flows. Phys. Rev. E 79, 051306 (2009)

    Article  ADS  Google Scholar 

  22. Spinewine, B., Capart, H., Fraccarollo, L., Larcher, M.: Laser stripe measurements of near-wall solid fraction in channel flows of liquid–granular mixtures. Exp. Fluids 50(6), 1507–1525 (2011)

    Article  Google Scholar 

  23. Louge, M.Y., Jenkins, J.T.: Microgravity segregation in binary mixtures of inelastic spheres driven by velocity fluctuation gradients. In: Chang, C.S., Misra, A., Liang, L.Y., Babic, M. (eds.) Mechanics of Deformation and Flow of Particulate Materials, pp. 370–379. ASCE, Reston (1997)

    Google Scholar 

  24. Barbolini, M., Biancardi, A., Natale, L., Pagliardi, M.: A low cost system for the estimation of concentration and velocity profiles in rapid dry granular flows. Cold Reg. Sci. Technol. 43, 49–61 (2005)

    Article  Google Scholar 

  25. Sheng, L.-T., Kuo, C.-Y., Tai, Y.-C., Hsiau, S.-S.: Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute. Exp. Fluids 51(5), 1329–1342 (2011)

    Article  Google Scholar 

  26. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen, London (1975)

    MATH  Google Scholar 

  27. Schenker, I., Filser, F.T., Herrmann, H.J., Gauckler, L.J.: Generation of porous particle structures using the void expansion method. Granul. Matter 11(3), 201–208 (2009)

    Article  MATH  Google Scholar 

  28. Kahmen, H., Faig, W.: Surveying. Walter de Gruyter Inc., Berlin (1988)

    Book  Google Scholar 

  29. Sarno, L., Papa, M.N., Martino, R.: Dam-break flows of dry granular material on gentle slopes. In: Genevois, R., Hamilton, D.L., Prestininzi, A. (eds.) Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment—Italian Journal of Engineering Geology and Environment, pp. 503–512, Casa Editrice Università La Sapienza, Rome (2011)

  30. Rasband, W.S.: ImageJ, U. S. National Institutes of Health, Bethesda. http://imagej.nih.gov/ij/. 1997–2016.31

  31. Li, M., Wilkinson, D., Patchigolla, K.: Comparison of particle size distributions measured using different techniques. Part. Sci. Technol. 23(3), 265–284 (2005)

    Article  Google Scholar 

  32. Dean, J.A.: Lange’s Handbook of Chemistry, 15th edn. McGraw-Hill Inc., New York (1999)

    Google Scholar 

  33. Burger, W., Burge, M.J.: Digital Image Processing: An Algorithmic Introduction Using Java. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ing. Luigi Carleo and Ing. Nicola Immediata for the generous help in designing and performing the experimental campaign. The authors also thank the University of Salerno for supporting this research through the special fund “Grandi e Medie Attrezzature Scientifiche”. Y. C. Tai is grateful for the financial support by the Ministry of Science and Technology, Taiwan, under Grant Number MOST 104-2221-E-006-175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sarno.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarno, L., Papa, M.N., Villani, P. et al. An optical method for measuring the near-wall volume fraction in granular dispersions. Granular Matter 18, 80 (2016). https://doi.org/10.1007/s10035-016-0676-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0676-3

Keywords

Navigation