Skip to main content
Log in

The influence of end walls on the segregation pattern in a horizontal rotating drum

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The influence of end walls on segregation of bidisperse granular beds in a short rotating horizontal drum is studied by a discrete element method. Whereas non-closed periodically continued drums segregate radially, all simulations of drums with end walls resulted in axial segregation with two bands at low friction between the particles and the end-wall, and three bands at high friction. Various simulations show irregular transitions between two approximately equally stable states, with rapid oscillations preceding the conversions. The formation of two axial bands decreases the energy dissipation by the bed, whereas neither radial segregation nor axial segregation into three bands reduced the power absorption at constant angular velocity. Roughening up the end-walls also increased the rate of axial segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525–541 (2004)

    Article  Google Scholar 

  2. Khakhar, D.V., Orpe, A.V., Hajra, S.K.: Segregation of granular materials in rotating cylinders. Phys. A 318(1–2), 129–136 (2003)

    Google Scholar 

  3. Turner, J.L., Nakagawa, M.: Particle mixing in a nearly filled horizontal cylinder through phase inversion. Powder Technol. 113(1–2), 119–123 (2000)

    Article  Google Scholar 

  4. Mellmann, J.: The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol. 118(3), 251–270 (2001)

    Article  Google Scholar 

  5. Nakagawa, M., Altobelli, S.A., Caprihan, A., Fukushima, E., Jeong, E.K.: Noninvasive measurements of granular flows by magnetic-resonance-imaging. Exp. Fluids 16(1), 54–60 (1993)

    Article  Google Scholar 

  6. Maneval, J.E., Hill, K.M., Smith, B.E., Caprihan, A., Fukushima, E.: Effects of end wall friction in rotating cylinder granular flow experiments. Granul. Matter 7(4), 199–202 (2005)

    Article  Google Scholar 

  7. Pohlman, N.A., Meier, S.W., Lueptow, R.M., Ottino, J.M.: Surface velocity in three-dimensional granular tumblers. J. Fluid Mech. 560, 355–368 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Pohlman, N.A., Ottino, J.M., Lueptow, R.M.: End-wall effects in granular tumblers: from quasi-two-dimensional flow to three-dimensional flow. Phys. Rev. E 74(3), 031305 (2006)

    Google Scholar 

  9. Chen, P.F., Ottino, J.M., Lueptow, R.M.: Subsurface granular flow in rotating tumblers: A detailed computational study. Phys. Rev. E 78(2), 021303 (2008)

    Google Scholar 

  10. Caps, H., Michel, R., Lecocq, N., Vandewalle, N.: Long lasting instabilities in granular mixtures. Phys. A Stat. Mech. Appl. 326(3–4), 313–321 (2003)

    Article  Google Scholar 

  11. Fiedor, S.J., Ottino, J.M.: Dynamics of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes. Phys. Rev. Lett. 91(24), 244301 (2003)

    Google Scholar 

  12. Hill, K.M., Kakalios, J.: Reversible axial segregation of binary-mixtures of granular-materials. Phys. Rev. E 49(5), R3610–R3613 (1994)

    Google Scholar 

  13. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hill, K.M., Kakalios, J.: Reversible axial segregation of rotating granular media. Phys. Rev. E 52(4), 4393–4400 (1995)

    Google Scholar 

  15. Arntz, M.M.H.D., den Otter, W.K., Beeftink, H.H., Bussmann, P.J.T., Briels, W.J., Boom, R.M.: Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level. AIChE J. 54(12), 3133–3146 (2008)

    Article  Google Scholar 

  16. Nakagawa, M., Altobelli, S.A., Caprihan, A., Fukushima, E.: NMRI study: axial migration of radially segregated core of granular mixtures in a horizontal rotating cylinder. Chem. Eng. Sci. 52(23), 4423–4428 (1997)

    Article  Google Scholar 

  17. Newey, M., Ozik, J., Van der Meer, S.M., Ott, E., Losert, W.: Band-in-band segregation of multidisperse granular mixtures. Europhys. Lett. 66(2), 205–211 (2004)

    Article  ADS  Google Scholar 

  18. Taberlet, N., Losert, W., Richard, P.: Understanding the dynamics of segregation bands of simulated granular material in a rotating drum. Europhys. Lett. 68(4), 522–528 (2004)

    Article  ADS  Google Scholar 

  19. Alexander, A., Muzzio, F.J., Shinbrot, T.: Effects of scale and inertia on granular banding segregation. Granul. Matter 5(4), 171–175 (2004)

    Article  Google Scholar 

  20. Chicharro, R., Peralta-Fabi, R., Velasco, R.: Segregation in dry granular systems. In: Behringer, R., Jenkins, J. (eds.) Powders and Grains ’97, p. 479. A.A. Balkema, Rotterdam (1997)

    Google Scholar 

  21. Rapaport, D.C.: Simulational studies of axial granular segregation in a rotating cylinder. Phys. Rev. E 65(6), 061306 (2002)

    Google Scholar 

  22. Taberlet, N., Newey, M., Richard, P., Losert, W.: On axial segregation in a tumbler: an experimental and numerical study. J. Stat. Mech., P07013. doi:10.1088/1742-5468/2006/07/p07013 (2006)

  23. Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Google Scholar 

  24. Cleary, P.W.: Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner. Eng. 11(11), 1061–1080 (1998)

    Article  Google Scholar 

  25. Dury, C.M., Ristow, G.H.: Competition of mixing and segregation in rotating cylinders. Phys. Fluids 11(6), 1387–1394 (1999)

    Article  ADS  MATH  Google Scholar 

  26. Schutyser, M.A.I., Weber, F.J., Briels, W.J., Boom, R.M., Rinzema, A.: Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation. Biotechnol Bioeng 79(3), 284–294 (2002)

    Article  Google Scholar 

  27. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford Science Publications, Oxford (1987)

  28. Atkins, P., Paula, J.D.: Phys. Chem., 9th edn. Oxford University Press, Oxford (2010)

    Google Scholar 

  29. Aranson, I.S., Tsimring, L.S.: Dynamics of axial separation in long rotating drums. Phys. Rev. Lett. 82(23), 4643–4646 (1999)

    Google Scholar 

  30. Choo, K., Molteno, T.C.A., Morris, S.W.: Traveling granular segregation patterns in a long drum mixer. Phys. Rev. Lett. 79(16), 2975–2978 (1997)

    Google Scholar 

  31. Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E 75(3), 031301 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Beeftink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arntz, M.M.H.D., den Otter, W.K., Beeftink, H.H. et al. The influence of end walls on the segregation pattern in a horizontal rotating drum. Granular Matter 15, 25–38 (2013). https://doi.org/10.1007/s10035-012-0386-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0386-4

Keywords

Navigation