Skip to main content

Advertisement

Log in

Effects of Multi-nutrient Additions on GHG Fluxes in a Temperate Grassland of Northern China

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Human activities have substantially enhanced the availability of important nutrient elements such as nitrogen (N), phosphorus (P), and potassium (K) in ecosystems worldwide. However, how the concurrent increase in all of these nutrients will affect greenhouse gas (that is, CO2, N2O, CH4) levels remains unknown. In a temperate steppe of northern China, a 2-year field experiment was conducted to examine the effects of multi-nutrient additions on GHG fluxes from 2009 to 2010. Four levels of annual nutrient loads were mimicked: 0 g NPK (control), 15.5 g P m−2 and 19.5 g K m−2 as KH2PO4 (PK), 10 g N m−2 as NH4NO3 plus PK (10N + PK), and 20 g N m−2 plus PK (20N + PK) per year. The results show that multi-nutrient additions led to significant increases in net primary production (NPP) and soil temperature (ST), a significant decrease in soil moisture (SM) in 2010, and no significant changes in other soil parameters. Seasonal patterns differed greatly for different GHG fluxes in response to different nutrient treatments, largely as a result of differences in influential factors. The 10N + PK treatment significantly increased CO2 uptake, whereas the 20N + PK treatment significantly decreased CO2 uptake. The application of P and K without additional N significantly enhanced CH4 uptake, whereas the two N + PK treatments significantly enhanced N2O emissions. Significant positive, linear relationships were found between cumulative CO2 uptake and soil total nitrogen (TN), microbial biomass carbon, and microbial biomass nitrogen, whereas significant negative, linear relationships were found with NPP, SM, and the C/N ratio. Significant positive, linear relationships were found between cumulative N2O emission and ST, TN, NPP, and total organic carbon, whereas no relationships were found between cumulative CH4 uptake and any soil parameters. CO2 flux was related to N2O flux temporally, to a certain extent, for all the treatments. In the control, N2O flux showed a negative, linear relationship with CH4 flux, whereas no regular relationships were detected between CO2 and CH4 fluxes in any treatment. Our findings imply that increasing nutrient deposition will change the magnitude, patterns, and relationships among GHG uptakes and emissions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adhya TK, Pattnaik P, Satpathy SN, Kumaraswamy S, Sethunathan N. 1998. Influence of phosphorus application on methane emission and production in flooded paddy soils. Soil Biol Biochem 30:177–81.

    Article  CAS  Google Scholar 

  • Aeschlimann U, Nosberger J, Edwards PJ, Schneider MK, Richter M, Blum H. 2005. Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrichment, N fertilization and plant species. Plant Cell Environ 28:823–33.

    Article  CAS  Google Scholar 

  • Akiyama H, Yan X, Yang K. 2010. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Change Biol 16:1837–46. doi:10.1111/j.1365-2486.2009.02031.x.

    Article  Google Scholar 

  • Babu YJ, Nayak DR, Adhya TK. 2006. Potassium application reduces methane emission from flooded field planted to rice. Biol Fertil Soils 42:532–41.

    Article  Google Scholar 

  • Bai WM, Wang ZW, Chen QS, Zhang WH, Li LH. 2008. Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Funct Ecol 22:583–91.

    Article  Google Scholar 

  • Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J. 2007. Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 yr of treatment. New Phytol 175:523–34.

    Article  CAS  PubMed  Google Scholar 

  • Batjes NH. 1998. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biol Fertil Soils 27:230–5.

    Article  CAS  Google Scholar 

  • Blankinship JC, Brown JR, Dijkstra P, Hungate BA. 2010. Effects of interactive global changes on methane uptake in annual grassland. J Geophys Res 115:1–9.

    Google Scholar 

  • Brady NC, Weil RR. 2002. The nature and properties of soils. New Jersey: Prentice Hall. 07458

    Google Scholar 

  • Brumme R, Borken W, Finke S. 1999. Hierarchical control on nitrous oxide emissions in forest ecosystems. Glob Biogeochem Cycles 13:1137–48.

    Article  CAS  Google Scholar 

  • Bubier J, Moore T, Savage K, Crill P. 2005. A comparison of methane flux in a boreal landscape between a dry and a wet year. Glob Biogeochem Cycles 19:GB1023.

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA. 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Change Biol 13:1168–86. doi:10.1111/j.1365-2486.2007.01346.x.

    Article  Google Scholar 

  • Cheng W, Chen Q, Xu Y, Han X, Li L (2009) Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: contrasting regional patterns and global patterns. Glob Biogeochem Cycles 23. doi:10.1029/2008GB003315.

  • Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a ‘‘Redfield ratio’’ for the microbial biomass? Biogeochemistry 85:235–52.

    Article  Google Scholar 

  • Cleveland CC, Townsend AR. 2006. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci 103(27):10316–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conrad R, Klose M. 2005. Effect of potassium phosphate fertilization on production and emission of methane and its 13C-stable isotope composition in rice microcosms. Soil Biol Biochem 37:2099–108.

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Thompson K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–14.

    Article  Google Scholar 

  • Danger M, Daufresne T, Lucas F, Pissard S, Lacroix G. 2008. Does Liebig’s law of the minimum scale up from species to communities? Oikos 117:1741–51.

    Article  Google Scholar 

  • Datta A, Santra SC, Adhya TK. 2013. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmos Environ 66:123–30.

    Article  CAS  Google Scholar 

  • Dijkstra FA, Hobbie SE, Knops JMH, Reich PB. 2004. Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecol Lett 7:1192–8.

    Article  Google Scholar 

  • Dong Y, Zhang S, Qi Y, Chen Z, Geng Y. 2000. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation. Chin Sci Bull 45:1590–4.

    Article  CAS  Google Scholar 

  • Eagle JE, Henry LR, Olander LP, Haugen-Kozyra K, Millar N, Robertson GP (2010) Greenhouse gas mitigation potential of agricultural land management in the United States. A synthesis of the literature. Technical working group on agricultural greenhouse gases (T-AGG) report. Companion report to assessing greenhouse gas mitigation opportunities and implementation options for agricultural land management in the United States, Nicholas Institute for Environmental Policy Solutions Report, NI R 10-04, October 2010.

  • Egilla JN, Davies FT. 1995. Response of Hibiscus-rosa-sinensis L. to varying levels of potassium fertilization–growth, gas-exchange and mineral element concentration. J Plant Nutr 18:1765–83.

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–42.

    Article  PubMed  Google Scholar 

  • Eriksson T, Öquist MG, Nilsson MB. 2010. Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Glob Change Biol 16:2130–44. doi:10.1111/j.1365-2486.2009.02097.x.

    Article  Google Scholar 

  • Fornara DA, Banin L, Crawley MJ. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Glob Change Biol . doi:10.1111/gcb.12323.

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Garcia-Montiel D, Melillo J, Steudler P, Neill C, Feigl B, Cerri C. 2002. Relationship between N2O and CO2 emissions from the Amazon Basin. Geophys Res Lett 29:GB3012. doi:10.1029/2002GL013830.

    Article  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH. 1973. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol Monogr 43:173–91.

    Article  Google Scholar 

  • Hall SJ, Asner G, Kitayama K. 2004. Land use, climate, and substrate controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry 70:27–58.

    Article  CAS  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE et al. 2011. Resource co-limitation of primary producer communities. Ecol Lett 14:852–62.

    Article  PubMed  Google Scholar 

  • Hejcma M, Szakova J, Schellberg J, Tlustos P. 2010. The Rengen Grassland Experiment: relationship between soil and biomass chemical properties, the amount of applied elements and their uptake. Plant Soil 333:163–79.

    Article  Google Scholar 

  • Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP. 2011. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob Change Biol 17:1140–52. doi:10.1111/j.1365-2486.2010.02349.x.

    Article  Google Scholar 

  • Hutsch BW. 1996. Methane oxidation in soils of two long-term fertilization experiment in German. Soil Biol Biochem 28:773–82.

    Article  Google Scholar 

  • Hutsch BW. 2001. Methane oxidation, nitrification, and counts of methanotrophic bacteria in soils from a long-term fertilization experiment. J Plant Nutr Soil Sci 164:21–8.

    Article  CAS  Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. p 996.

  • Jassal RS, Black TA, Roy R, Ethier G. 2011. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 162:182–6.

    Article  CAS  Google Scholar 

  • Jones SK, Reesa RM, Skibab UM, Balla BC. 2005. Greenhouse gas emissions from a managed grassland. Glob Planet Change 47:201–11.

    Article  Google Scholar 

  • Juutinen S, Bubier JL, Moore TR. 2010. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue Bog. Ecosystems 13:874–87.

    Article  CAS  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43.

    PubMed  Google Scholar 

  • Kleinebercher T, Weber H, Holzel N. 2011. Effects of grazing on seasonal variation of aboveground biomass quality in calcareous grasslands. Plant Ecol 212:1563–76.

    Article  Google Scholar 

  • Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, Moore TR. 2013. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob Change Biol . doi:10.1111/gcb.12328.

    Google Scholar 

  • Li L, Han X, Wang Q, Chen Q. 2002. Correlations between plant biomass and soil respiration in a Leymus chinensis steppe community in the Xilin River Basin of Inner Mongolia. Acta Bot Sin 44:593–7.

    Google Scholar 

  • Liang B, Yang X, He X, Zhou J. 2011. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biol Fertil Soils 47:121–8.

    Article  CAS  Google Scholar 

  • Liu W, Xu W, Han Y, Wang C, Wan S. 2007. Response of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biol Fertil Soils 44:259–68.

    Article  Google Scholar 

  • Mcswiney C, Robertson P. 2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Change Biol 11:1712–19.

    Article  Google Scholar 

  • Millar N, Baggs E. 2005. Relationships between N2O emissions and water-soluble C and N contents of agroforestry residues after their addition to soil. Soil Biol Biochem 37:605–8.

    Article  CAS  Google Scholar 

  • Nikiema P, Rothstein DE, Min D, Kapp CJ. 2011. Nitrogen fertilization of switch grass increases biomass yield and improves net greenhouse gas balance in northern Michigan, U.S.A. Biomass Bioenerg 35(10):1–12.

    Article  Google Scholar 

  • Niu S, Yang H, Zhang Z, Wu M, Lu Q, Li L, Han X, Wan S. 2009a. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–26.

    Article  CAS  Google Scholar 

  • Niu S, Wu M, Han Y, Xia J, Zhang Z, Yang H, Wan S. 2009b. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob Change Biol . doi:10.1111/j.1365-2486.2009.01894.x.

    Google Scholar 

  • Peterjohn WT, Schlesinger WH. 1990. Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79.

    Article  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding WT. 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–5.

    Article  CAS  Google Scholar 

  • Reay DS, Nedwell DB. 2004. Methane oxidation in temperate soils: effects of inorganic N. Soil Biol Biochem 36:2059–65.

    Article  CAS  Google Scholar 

  • Saidana D, Braham M, Boujnah D, Mariem FB, Ammari S, El Hadj SB. 2009. Nutrient stress, ecophysiological, and metabolic aspects of olive tree cultivars. J Plant Nutr 32:129–45.

    Article  CAS  Google Scholar 

  • Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W. 1989. A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J Geophys Res 94:16405–16.

    Article  Google Scholar 

  • Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA. 2011. Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biol Biochem 43:1034–41.

    Article  CAS  Google Scholar 

  • Turunen J, Roulet NT, Moore TR. 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob Biogeochem Cycles 18:GB2003. doi:10.1029/2003GB002154.

    Article  Google Scholar 

  • van den Driessche R, Ponsford D. 1995. Nitrogen induced potassium deficiency in white spruce (Picea glauca) and Engelmann spruce (Picea engelmannii) seedlings. Can J For Res 25:1445–54.

    Article  Google Scholar 

  • Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C. 2010. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–13. doi:10.1111/j.1365-2389.2009.01217.x.

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–7.

    Article  CAS  Google Scholar 

  • Vuichard N, Ciais P, Viovy N, Soussana JF (2007) Simulating the greenhouse gas budget of European grasslands within a process-driven approach: spatial and temporal patterns of radiative forcing. Glob Biogeochem Cycles 21. doi:10.1029/2005GB002612.

  • Wang Z, Song Y, Gulledge J, Yu Q, Liu H, Han X. 2009. China’s grazed temperate grasslands are a net source of atmospheric methane. Atmos Environ 43:2148–53.

    Article  CAS  Google Scholar 

  • Wesche K, Ronnenberg K. 2010. Effects of NPK fertilisation in arid southern Mongolian desert steppes. Plant Ecol 207:93–105.

    Article  Google Scholar 

  • Wolf B, Zheng X, Bruggemann N, Chen W, Dannenmann M. 2010. Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464:881–4.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Yao Z, Brüggemann N, Shen Z, Wolf B, Dannenmann M, Zheng X, Butterbach-Bahl K. 2010. Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia. China Soil Biol Biochem 42:773–87.

    Article  CAS  Google Scholar 

  • Xia J, Wan S. 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–39.

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Niu S, Wan S. 2009. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Glob Change Biol 15:1544–56.

    Article  Google Scholar 

  • Xu Y, Wan S, Cheng W, Li L. 2008a. Impacts of grazing intensity on denitrification and N2O production in a semi-arid grassland ecosystem. Biogeochemistry 88:103–15.

    Article  CAS  Google Scholar 

  • Xu X, Tian H, Hui D. 2008b. Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Glob Change Biol 14:1651–60. doi:10.1111/j.1365-2486.2008.01595.x.

    Article  Google Scholar 

  • Yang H, Wu M, Liu W, Zhang Z, Zhang N. 2011. Community structure and composition in response to climate change in a temperate steppe. Glob Change Biol 17:452–65. doi:10.1111/j.1365-2486.2010.02253.x.

    Article  Google Scholar 

  • Yang H, Jiang L, Li L, Li A, Wu M, Wan S. 2012. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecol Lett . doi:10.1111/j.1461-0248.2012.01778.x.

    Google Scholar 

  • Zaehle S, Ciais P, Friend AD, Prieur V. 2011. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat Geosci 4:601–5. doi:10.1038/ngeo1207.

    Article  CAS  Google Scholar 

  • Zang Y, Wang YY, Su SL, Li CS. 2011. Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences 8(5):1225–35.

    Article  Google Scholar 

  • Zhang LH, Song CC, Zheng X, Wang D, Wang Y. 2007. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China. Environ Geol 52:529–39.

    Article  CAS  Google Scholar 

  • Zhang Y, Song L, Liu XJ, Li WQ, Lü SH, Zheng LX, Bai ZC, Cai GY, Zhang FS. 2008. Atmospheric organic nitrogen deposition in China. Atmos Environ 46:195–204.

    Article  Google Scholar 

  • Zou J, Huang Y, Zong L, Zheng X, Wang Y. 2004. Carbon dioxide, methane, and nitrous oxide emissions from a rice–wheat rotation as affected by crop residue. Adv Atmos Sci 21:691–8.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Shuxin Xu, Xiang Li, and Hong Yang for their help in setting up field facilities and conducting measurements, and Zhichun Lan for his help with the statistical analysis. We sincerely thank the two anonymous reviewers for their highly inspiring and constructive comments and suggestions that improved the rigour of our conclusions. We would also like to thank Emily Drummond with the University of British Columbia for her assistance with English editing. This work was funded by the National Natural Science Foundation of China (40801037; 31130008; 41371111), the National Basic Research Program of China (2010CB951300; 2010CB833502), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA05050406-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qibing Wang or Linghao Li.

Additional information

Author contributions

Lihua Zhang, Linghao Li, and Qibing Wang conceived of or designed study. Lihua Zhang, Yawen Huo, Dufa Gu, and Yin Bao performed research. Linghao Li and Lihua Zhang analyzed data. Lihua Zhang, Linghao Li, and Qibing Wang contributed new methods or models. Linghao Li, Lihua Zhang, and Qibing Wang wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Huo, Y., Guo, D. et al. Effects of Multi-nutrient Additions on GHG Fluxes in a Temperate Grassland of Northern China. Ecosystems 17, 657–672 (2014). https://doi.org/10.1007/s10021-014-9750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9750-z

Keywords

Navigation