Skip to main content

Advertisement

Log in

Forest Continuity as a Key Determinant of Soil Carbon and Nutrient Storage in Beech Forests on Sandy Soils in Northern Germany

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Forest (or tree) age has been identified as an important determinant of the carbon (C) storage potential of forest soils. A large part of Central Europe’s current forested area was affected by land use change with long periods of cultivation in past centuries suggesting that the organic C stocks in the soil (SOC) under recent forest may partly be legacies of the past and that stand age effects have to be distinguished from forest continuity effects (that is, the time since re-afforestation). We examined the influence of mean tree age and forest continuity on the SOC pool and the stores of total N and available P, Ca, Mg, and K in the soil (mineral soil and organic layer) across a sample of 14 beech (Fagus sylvatica) forests on sandy soil with variable tree age (23–189 years) and forest continuity (50-year-old afforestation to ancient (‘permanent’) forest, that is, >230 years of proven continuity). Ancient beech forests (>230 years of continuity) stored on average 47 and 44% more organic C and total N in the soil than recent beech afforestation (50–128 years of continuity). Contrary to expectation, we found large and significant C and N pool differences between the forest categories in the mineral soil but not in the organic layer indicating that decade- or century-long cultivation has reduced the subsoil C and nutrient stores while the organic layer element pools have approached a new equilibrium after only 50–128 years. PCA and correlation analyses suggest that forest continuity cannot be ignored when trying to understand the variation in soil C stocks between different stands. Forest clearing, subsequent cultivation, and eventual re-afforestation with beech resulted in similar relative stock reductions of C and N and, thus, no change in soil C/N ratio. We conclude that the continuity of forest cover, which may or may not be related to tree age, is a key determinant of the soil C and nutrient stores of beech forests in the old cultural landscape of Central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Allen JC. 1985. Soil response to forest clearing in the United States and the tropics: geological and biological factors. Biotropica 17:15–27.

    Article  Google Scholar 

  • Bork H-R, Bork H, Dalchow C, Faust B, Piorr H-P, Schatz T. 1998. Landschaftsentwicklung in Mitteleuropa. Gotha: Klett-Perthes Verlag.

    Google Scholar 

  • Bormann BT, Sidle RC. 1990. Changes in productivity and distribution of nutrients in a chronosequence at Glacier Bay National Park. Alaska J Ecol 78:561–78.

    Article  Google Scholar 

  • Clark JD, Johnson AH. 2011. Carbon and nitrogen accumulation in post-agricultural forest soils of western New England. Soil Sci Soc Am J 75:1530–42.

    Article  CAS  Google Scholar 

  • Compton JE, Boone RD. 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–30.

    Article  Google Scholar 

  • Covington WW. 1981. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–8.

    Article  Google Scholar 

  • Ellenberg H, Leuschner C. 2010. Vegetation Mitteleuropas mit den Alpen. 6th edn. Stuttgart: Ulmer.

    Google Scholar 

  • Falkengren-Grerup U, ten Brink D-J, Brunet J. 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage 225:74–81.

    Article  Google Scholar 

  • Glaser FF, Hauke U. 2004. Historisch alte Waldstandorte und Hudewälder in Deutschland. Angewandte Landschaftsökologie 61:1–193.

    Google Scholar 

  • Gleixner G et al. 2009. Soil carbon accumulation in old-growth forests. In: Wirth C, Gleixner G, Heimann M, Eds. Old-growth forests. Ecological studies, Vol. 207. Berlin: Springer. p. 231–66.

  • Grashof-Bokdam CJ, Geertsema W. 1998. The effect of isolation and history on colonization patterns of plant species in secondary woodland. J Biogeogr 25:837–46.

    Article  Google Scholar 

  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biol 8:345–60.

    Article  Google Scholar 

  • Hansen EA. 1993. Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 5:431–6.

    Article  CAS  Google Scholar 

  • Heinken T. 1995. Naturnahe Laub- und Nadelwälder grundwasserferner Standorte im niedersächsischen Flachland: Gliederung, Standortsbedingungen, Dynamik. Dissertationes. Botanicae 239.

  • Heinsdorf E, Krauss HH, Tölle H. 1986. Entwicklung der C- und N-Vorräte nach Kahlschlag auf ärmeren Sandböden unter Kiefer. Beitr f d Forstwirtsch 1:8–13.

    Google Scholar 

  • Heuer R. 1920. Zur Heimatkunde der Prignitz. 2nd edn. Pritzwalk: Verlag von Adolf Tienken. p 92.

    Google Scholar 

  • Jahns S. 2011. Die holozäne Waldgeschichte von Brandenburg und Berlin: eine aktuelle Übersicht. Tuexenia, Beiheft 4:47–55.

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. 2007a. How strongly can forest management influence soil carbon sequestration? Geoderma 27:253–68.

    Article  Google Scholar 

  • Jandl R, Vesterdal L, Olsson M, Bens O, Badeck F, Rock J. 2007. Carbon sequestration and forest management. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2007 2, No. 017:1–16.

  • Jeschke L, Lenschow U, Zimmermann H, Eds. 2003. Die Naturschutzgebiete in Mecklenburg-Vorpommern. Schwerin: Demmler Verlag.

    Google Scholar 

  • Koerner W, Dupouey JL, Dambrine E, Benoit M. 1997. Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains. Fr J Ecol 85:351–8.

    Article  Google Scholar 

  • König N, Fortmann H. 1996. Probenvoreitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Forschungszentrum Waldökosysteme, University of Göttingen, Göttingen.

  • Krenzlin A. 1952. Dorf, Feld und Wirtschaft im Gebiet der großen Täler und Platten östlich der Elbe. Forschungen zur deutschen Landeskunde 70:1–144.

    Google Scholar 

  • Küster H. 1997. The role of farming in the postglacial expansion of beech and hornbeam in the oak woodlands of central Europe. Holocene 7:239–42.

    Article  Google Scholar 

  • Lal R. 2005. Forest soils and carbon sequestration. For Ecol Manage 220:242–58.

    Article  Google Scholar 

  • Lawesson JE, De Blust G, Grashof C, Firbank L, Honnay O, Hermy M, Hobitz P, Jensen LM. 1998. Species diversity and area-relationships in Danish beech forests. For Ecol Manage 106:235–45.

    Article  Google Scholar 

  • Leuschner C. 2001. Changes in forest ecosystem function with succession in the Lüneburger Heide. In: Tenhunen J et al. Eds. Ecosystem approaches to landscape management in Central Europe. Ecological studies, Vol. 147. Berlin: Springer. p. 517–68.

  • Leuschner C, Immenroth J. 1994. Landschaftsveränderungen in der Lüneburger Heide 1775–1985: Dokumentation und Bilanzierung auf der Grundlage historischer Karten. Archiv f Naturschutz u Landschaftsforsch 23:85–139.

    Google Scholar 

  • LGRB (Landesamt für Geowissenschaften und Rohstoffe Brandenburg). 2001. Bodenübersichtskarte (BÜK) 1:300.000 Brandenburg. Erläuterung zur BÜK Brandenburg. Kleinmachnow, Potsdam, Germany.

  • Li D, Niu S, Luo Y. 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. doi:10.1111/j.1469-8137.2012.04150.x.

    PubMed Central  Google Scholar 

  • Mann LK. 1986. Changes in soil carbon storage after cultivation. Soil Sci 142:279–88.

    Article  CAS  Google Scholar 

  • Meiwes KJ, Meesenburg H, Rademacher P. 1999. Wirkung von Stickstoff auf Waldökosysteme. Mitteil. Norddeut. Naturschutzakad. (NNA, Schneverdingen) 1/99:118–121.

    Google Scholar 

  • Moning C, Müller J. 2009. Critical forest age thresholds fort he diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol Indic 9:922–32.

    Article  Google Scholar 

  • Mund M, Schulze E-D. 2006. Impacts of forest management on the carbon budget of European beech (Fagus sylvatica) forests. Allg Forst-u J-Ztg. 177:47–63.

    Google Scholar 

  • Odum EP. 1969. The strategy of ecosystem development. Science 164:262–70.

    Article  CAS  PubMed  Google Scholar 

  • Paal J, Turb M, Köster T, Rajandu E, Liira J. 2011. Forest land-use history affects the species composition and soil properties of old-aged hillock forests in Estonia. J For Res 16:244–52.

    Article  CAS  Google Scholar 

  • Parfitt RL, Percival HJ, Dahlgren RA, Hill LF. 1997. Soil and solution chemistry under pasture and radiata pine in New Zealand. Plant Soil 191:279–90.

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. 2002. Change in soil carbon following afforestation. For Ecol Manage 168:241–57.

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B, Schumacher J, Gensior A. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone: carbon response functions as a model approach. Global Change Biol 17:2415–27.

    Article  Google Scholar 

  • Post WM, Kwon KC. 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol 6:317–27.

    Article  Google Scholar 

  • Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol 10:2052–77.

    Article  Google Scholar 

  • Scherfose V, Hoffmann A, Jeschke L, Panek N, Riecken U, Ssymank A. 2007. Gefährdung und Schutz von Buchenwäldern in Deutschland. Natur u Landsch 82:416–22.

    Google Scholar 

  • Schiffman PM, Johnson WC. 1989. Phytomass and detrital carbon storage during forest regrowth in the southeastern United States piedmont. Can J For Res 19:69–78.

    Article  Google Scholar 

  • Schlesinger WG. 1986. Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE, Eds. The changing carbon cycle: a global analysis. New York: Springer. p 194–220.

    Chapter  Google Scholar 

  • Schlesinger W. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–4.

    Article  CAS  Google Scholar 

  • Schlesinger WH, Bernhardt ES. 2013. Biogeochemistry. An analysis of global change. 3rd edn. Amsterdam: Academic Press.

    Google Scholar 

  • Schrumpf M, Schulze E-D, Kaiser K, Schumacher J. 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences 8:1193–212.

    Article  CAS  Google Scholar 

  • Selva SB. 1994. Lichen diversity and stand continuity in the northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. Bryol 97:424–9.

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustra K. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soil. Plant Soil 241:155–76.

    Article  CAS  Google Scholar 

  • Sollins P, Spycher G, Topik C. 1983. Processes of soil organic matter accretion at a mudflow chronosequence, Mt. Shasta, California. Ecology 64:1273–82.

    Article  Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP, Eds. 1996. Growth trends in European Forests. European Forest Research Institute Report No. 5. Berlin: Springer.

    Google Scholar 

  • Stewart CE, Plante AF, Paustian K et al. 2008. Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci Soc Am J 72:379–92.

    Article  CAS  Google Scholar 

  • Verheyen K, Bossuyt B, Hermy M, Tack G. 1999. The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–28.

    Article  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P. 2002. Change in soil organic carbon following afforestation of former arable land. For Ecol Manage 169:137–47.

    Article  Google Scholar 

  • Von Oheimb G, Härdtle W, Naumann PS, Westphal C, Assmann T, Meyer H. 2008. Long-term effects of historical heathland farming on soil properties of forest ecosystems. For Ecol Manage 255:1984–93.

    Article  Google Scholar 

  • Wilson BR, Moffat AJ, Nortcliff S. 1997. The nature of three ancient woodland soils in southern England. J Biogeogr 24:633–46.

    Article  Google Scholar 

  • Wolff B, Riek W. 1997. Deutscher Waldbodenbericht 1996: Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987–1993 (BZE), Vol. 1Bonn: Bundesministerium f Ernähr Landwirtsch u Forsten.

    Google Scholar 

  • Wulf M. 2003. Forest policy in the EU and its influence on the plant diversity of woodlands. J Environ Manage 67:15–25.

    Article  PubMed  Google Scholar 

  • Wulf M. 2004. Auswirkungen des Landschaftswandels auf die Verbreitungsmuster von Waldpflanzen. Konsequenzen für den Naturschutz. Diss Bot 392:1–306.

    Google Scholar 

  • Yang Y, Luo Y, Finzi AC. 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol 190:977–89.

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Bashkin M. 1998. Soil carbon accretion and earthworm recovery following revegetation in abandoned sugarcane fields. Soil Biol Biochem 30:825–30.

    Article  CAS  Google Scholar 

  • Zhou G, Liu Z, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J. 2006. Old-growth forests can accumulate carbon in soils. Science 314:1417.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ute Schlonsog, Marianne Gscheidlen, and Uta Nüsse-Hahne conducted part of the chemical analysis which is gratefully acknowledged. We thank the local forest departments and the land owners for permission to extract soil samples. Recommendations by two anonymous reviewers greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Leuschner.

Additional information

Author Contributions

CL and MW designed the study, PB with contribution by MW, DH, and CL conducted the field research, DH, PB, and CL analyzed the data, and CL (with contributions by MW) wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuschner, C., Wulf, M., Bäuchler, P. et al. Forest Continuity as a Key Determinant of Soil Carbon and Nutrient Storage in Beech Forests on Sandy Soils in Northern Germany. Ecosystems 17, 497–511 (2014). https://doi.org/10.1007/s10021-013-9738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9738-0

Keywords

Navigation