Skip to main content
Log in

Approximation of Solutions to Constrained Convex Minimization Problem in Hilbert Spaces

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

The idea of this paper is to perturb Mann iteration scheme and obtain a strong convergence result for approximation of solutions to constrained convex minimization problem in a real Hilbert space. Furthermore, we give computational analysis of our iterative scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillon, J.B., Haddad, G.: Quelques proprietes des operateurs angle-bornes et n-cycliquement monotones. Isreal. J. Math. 26, 137–150 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berinde, V.: Iterative approximation of fixed points. Lecture Notes in Mathematics 1912. Springer, Berlin (2007)

    Google Scholar 

  3. Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with applications to the traffic assignment problem. Math. Program. Stud. 17, 139–159 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byrne, C.: Unified treatment of some algorithms in signal processing and image construction. Inverse Probl. 20, 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calamai, P.H., More, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ceng, L.-C., Ansari, Q.H., Yao, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Anal. 74, 5286–5302 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations. Lecture Notes in Mathematics 1965. Springer (2009)

  8. Combettes, P.L.: Solving monotone inclusion via compositions of nonexpansive averaged operators. Optim. 53, 475–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gafni, E.M., Bertsekas, D.P.: Two metric projection methods for constrained optimization. SIAM J. Control Optim. 22, 936–964 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Han, D., Lo, H.K.: Solving non-additive traffic assignment problems: a descent method for co-coercive variational inequalities. Eur. J. Oper. Res. 159, 529–544 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Levitin, E.S., Polyak, B.T.: Constrained minimization problems. USSR Comput. Math. Math. Physis. 6, 1–50 (1966)

    Article  Google Scholar 

  12. Moore, C., Nnoli, B.V.C.: Iterative solution of nonlinear equations involving set-valued uniformly accretive operators. Comput. Math. Appl. 42, 131–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Morales, C.H.: Surjectivity theorems for multivalued mappings of accretive type. Comment. Math. Uni. Carol. 26, 397–413 (1985)

    MATH  Google Scholar 

  14. Podilchuk, C.I., Mammone, R.J.: Image recovery by convex projections using a least-squares constraint. J. Optim. Soc. Amer. A7, 517–521 (1990)

    Article  Google Scholar 

  15. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    Google Scholar 

  16. Reich, S.: Strong convergence theorems for resolvents of accretive mappings in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruszczynski, A.: Nonlinear Optimization. Princeton University Press, New Jersey (2006)

    MATH  Google Scholar 

  18. Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Optim. 1, 35–43 (2010)

    MathSciNet  Google Scholar 

  19. Wang, C.Y., Xiu, N.H.: Convergence of gradient projection methods for generalized convex minimization. Comput. Optim. Appl. 16, 111–120 (2000)

    Article  MathSciNet  Google Scholar 

  20. Xiu, N.H., Wang, C.Y., Zhang, J.Z.: Convergence properties of projection and contraction methods for variational inequality problems. Appl. Math. Optim. 43, 147–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiu, N., Wang, D., Kong, L.: A note on the gradient projection method with exact stepsize rule. J. Comput. Math. 25, 221–230 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360–378 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yao, Y., Kang, S.M., Jigang, W., Yang, P.-X.: A Regularized gradient projection method for the minimization problem. J. Appl. Math. 2012 (259813), 9 (2012). doi:10.1155/2012/259813

    Google Scholar 

  24. Yao, Y., Liou, Y-C., Wen, C-F.: Variant gradient projection methods for the minimization problems. Abstr. Appl. Anal. 2012 (792078), 21 (2012). doi:10.1155/2012/792078

    MathSciNet  Google Scholar 

  25. Youla, D.: On deterministic convergence of iterations of related projection mappings. J. Vis. Commun. Image Represent 1, 12–20 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the Editor and the three anonymous referees for many insightful, detailed, and helpful comments which led to significant improvement of the previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, Y. Approximation of Solutions to Constrained Convex Minimization Problem in Hilbert Spaces. Vietnam J. Math. 43, 515–523 (2015). https://doi.org/10.1007/s10013-014-0091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-014-0091-1

Keywords

Mathematics Subject Classification (2000)

Navigation