Skip to main content

Projection methods for variational inequalities with application to the traffic assignment problem

  • Chapter
  • First Online:
Nondifferential and Variational Techniques in Optimization

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 17))

Abstract

It is well known [2, 3, 16] that if \(\bar T:R^n \to R^n\) is a Lipschitz continuous, strongly monotone operator and X is a closed convex set, then a solution x *X of the variational inequality \((x - x^ * )'\bar T(x^ * ) \geqslant 0\), ∨xX can be found iteratively by means of the projection method \(x_{k - 1} = Px[x_k - \alpha \bar T(x_k )]\), x 0X, provided the stepsize α is sufficiently small. We show that the same is true if \(\bar T\) is of the form \(\bar T = A'TA\), where A:R nR m is a linear mapping, provided T:R mR m is Lipschitz continuous and strongly monotone, and the set X is polyhedral. This fact is used to construct an effective algorithm for finding a network flow which satisfies given demand constraints and is positive only on paths of minimum marginal delay or travel time.

Work supported by Grants ONR-N00014-75-C-1183 and NSF ENG-7906332.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.Z. Aashtiani, “The multi-model assignment problem”. Ph.D. Thesis, Sloan School of Management, Massachusetts Institute of Technology (May, 1979).

    Google Scholar 

  2. A. Auslender, Optimization. Méthodes numériques (Mason, Paris, 1976).

    Google Scholar 

  3. A.B. Bakushinskij and B.T. Poljak, “On the solution of variational inequalities”, Soviet Mathematics Doklady 219 (1974) 1705–1710.

    Google Scholar 

  4. D.P. Bertsekas, “Algorithms for nonlinear multicommodity network flow problems”, in: A. Bensoussan and J.L. Lions, eds., International Symposium on Systems Optimization and Analysis (Springer, New York, 1979) pp. 210–224.

    Chapter  Google Scholar 

  5. D.P. Bertsekas, “A class of optimal routing algorithms for communication networks”. Proceédings of 1980 ICCC, Atlanta, GA (1980) pp. 71–75.

    Google Scholar 

  6. D.P. Bertsekas, E. Gafni and K.S. Vastola, “Validation of algorithms for routing of flow in networks”, Proceedings of 1978 Conference on Decision and Control, San Diego, CA (1979) pp. 220–227.

    Google Scholar 

  7. D.G. Cantor and M. Gerla, “Optimal routing in a packet switched computer network”, IEEE Transactions on Computers C-23 (1974) 1062–1069.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Dafermos, “Traffic equilibrium and variational inequalities”, Transportation Science 14 (1980) 42–54.

    Article  MathSciNet  Google Scholar 

  9. J.C. Dunn, “Global and asymptotic convergence rate estimates for a class of projected gradient processes”, SIAM Journal on Control and Optimization 19 (1981) 368–400.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.C. Dunn, “Newton’s method and the Goldstein step length rule for constrained minimization problems”, SIAM Journal on Control and Optimization 18 (1980) 659–674.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method: An approach to store-and forward communication network design”, Networks 3 (1973) 97–133.

    Article  MATH  MathSciNet  Google Scholar 

  12. E.M. Gafni, “Convergence of a routing algorithm”, Laboratory for Information and Decision Systems Report 907, Massachussetts Institute of Technology, Cambridge, MA (May 1979).

    Google Scholar 

  13. R.G. Gallager, “A minimum delay routing algorithm using distributed computation”, IEEE Transactions on Communication COM-25 (1977) 73–85.

    Article  MATH  MathSciNet  Google Scholar 

  14. E.S. Levitin and B.T. Poljak, “Constrained minimization methods”, U.S.S.R. Computational Mathematics and Mathematical Physics 6 (1966) 1–50.

    Article  MathSciNet  Google Scholar 

  15. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, 1970).

    MATH  Google Scholar 

  16. M. Sibony, “Méthodes itératives pour les équations et inéquations aux dérivées partielles nonlinéares de type monotone”, Calcolo 7 (1970) 65–183.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. C. Sorensen R. J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Bertsekas, D.P., Gafni, E.M. (1982). Projection methods for variational inequalities with application to the traffic assignment problem. In: Sorensen, D.C., Wets, R.J.B. (eds) Nondifferential and Variational Techniques in Optimization. Mathematical Programming Studies, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120965

Download citation

  • DOI: https://doi.org/10.1007/BFb0120965

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00814-6

  • Online ISBN: 978-3-642-00815-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics