Skip to main content
Log in

Enhanced lithium ionic intercalation and conduction performance of flexible iron oxide films using an atmospheric pressure plasma jet

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Enhancement on lithium ionic intercalation and conduction performance of flexible-organo-iron oxide (FeO y C z ) films, via a rapid co-synthesis with lithium oxides (LiO y C z ) onto 40 ohm/square flexible polyethylene terephthalate/indium tin oxide substrates at a short exposed duration of 35 s, using an atmospheric pressure plasma jet (APPJ) by mixed ferrocene [Fe(C5H5)2] and lithium tert-butoxide [(CH3)3COLi] precursors, was investigated. APPJ-synthesized-lithiated iron oxide (Li x FeO y C z ) films exhibit the prominent Li+ ionic intercalation performance in a 1 M LiClO4-propylene carbonate electrolyte potential analyzed both by potential sweep and potential step in situ Li+ ionic intercalation. The important Li+ ionic conduction performance of APPJ-synthesized Li x FeO y C z films is proven by electrochemical impedance spectroscopy in the device of PET/ITO/NiO x /Li x FeO y C z /NiO x /ITO. The Li+ ionic diffusion coefficient and conductivity of 1.16 × 10−10 cm2/s and 9.7 × 10−10 S/cm for FeO y C z films are, respectively, improved to 3.89 × 10−10 cm2/s and 838.0 × 10−10 S/cm for Li x FeO y C z films even after being bent 360° around a 2.5-cm-diameter rod for 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Schrebler RS, Altamirano H, Grez P, Herrera FV, Munoz EC, Ballesteros LA, Cordova RA, Gomez H, Dalchiele EA (2010) Thin Solid Films 518:6844–6852

    Article  CAS  Google Scholar 

  2. Shim S-H, Bengtson A, Morgan D, Sturhahn W, Cataiii K, Zhao J, Lerche M, Prakapenka V (2009) Proc Natl Acad Sci U S A 106:5508–5512

    Article  CAS  Google Scholar 

  3. Cai D, Li D, Ding L-X, Wang S, Wang H (2016) Electrochim Acta 192:407–413

    Article  CAS  Google Scholar 

  4. Yun S, Lee Y-C, Park HS (2016) Sci Rep 6(19959):1–6

    Google Scholar 

  5. Garcia-Lobato MA, Martinez AI, Zarate RA, Castro-Roman M (2010) Appl Phys Express 3(115801):1–3

    Google Scholar 

  6. Hao C, Shen Y, Wang Z, Wang X, Feng F, Ge C, Zhao Y, Wang K (2016) Acs Sust Chem Eng 4:1069–1077

    Article  CAS  Google Scholar 

  7. Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Ceram Int 42:6136–6144

    Article  CAS  Google Scholar 

  8. Brandt A, Balducci A (2013) J Power Sources 230:44–49

    Article  CAS  Google Scholar 

  9. Wang ZC, Hu XF, Kall PO, Helmersson U (2001) Chem Mater 13:1976–1983

    Article  CAS  Google Scholar 

  10. Yanagihara H, Myoka M, Isaka D, Niizeki T, Mibu K, Kita E (2013) J Phys D-Appl Phys 46(175004):1–5

    Google Scholar 

  11. Jogi I, Jacobsson TJ, Fondell M, Watjen T, Carlsson J-O, Boman M, Edvinsson T (2015) Langmuir 31:12372–12381

    Article  CAS  Google Scholar 

  12. Dang Duc D, Feng W, Duong Van T, Kim Y, Cho S (2015) Mater Lett 161:343–347

    Article  Google Scholar 

  13. Arod P, Shivashankar SA (2015) RSC Adv 5:59463–59471

    Article  CAS  Google Scholar 

  14. Fu D, Wren JC (2008) J Nucl Mater 374:116–122

    Article  CAS  Google Scholar 

  15. Garg D, Henderson PB, Hollingsworth RE, Jensen DG (2005) Mater Sci Eng B: Solid-State Mater Adv Technol 119:224–231

    Article  Google Scholar 

  16. Azens A, Gustavsson G, Karmhag R, Granqvist CG (2003) Solid State Ionics 165:1–5

    Article  CAS  Google Scholar 

  17. Ibrahim S, Johan MR (2012) Int J Electrochem Sci 7:2596–2615

    CAS  Google Scholar 

  18. Lin Y-S, Sung P-J, Tsai T-H, Hsieh M-H, Chen H, Lin C-F, Kao CH (2016a) J Solid State Electrochem 20:743–757

    Article  CAS  Google Scholar 

  19. Bonnet F, Ropital F, Lecour P, Espinat D, Huiban Y, Gengembre L, Berthier Y, Marcus P (2002) Surf Interface Anal 34:418–422

    Article  CAS  Google Scholar 

  20. Wu Y, Fang S, Jiang Y (1999) Solid State Ionics 120:117–123

    Article  CAS  Google Scholar 

  21. Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) Sci Rep 2(715):1–6

    Google Scholar 

  22. Lin Y-S, Lu W-H, Tsai T-H, Hsieh M-H (2015a) J Mater Sci-Mater Electron 26:9044–9055

    Article  CAS  Google Scholar 

  23. Singh MK, Yang Y, Takoudis CG (2008) J Electrochem Soc 155:D618–D623

    Article  CAS  Google Scholar 

  24. Lin Y-S, Wu S-S, Tsai T-H (2010) Sol Energy Mater Solar Cells 94:2283–2291

    Article  CAS  Google Scholar 

  25. Corbella C, Vives M, Pinyol A, Porqueras I, Person C, Bertran E (2003) Solid State Ionics 165:15–22

    Article  CAS  Google Scholar 

  26. Zakharchenko TK, Kozmenkova AY, Itkis DM, Goodilin EA (2013) Beilstein J Nanotechnology 4:758–762

    Article  CAS  Google Scholar 

  27. Choi KY, Do SH, Lemmens P, Wulferding D, Woo CS, Lee JH, Chu K, Yang CH (2011) Phys Rev B 84(132408):1–4

    Google Scholar 

  28. Jacintho GVM, Brolo AG, Corio P, Suarez PAZ, Rubim JC (2009) J Phys Chem C 113:7684–7691

    Article  CAS  Google Scholar 

  29. Turkovic A, Ivanda M, Bitenc M, Orel ZC (2011) J Nanomaterials 2011(967307):1–8

    Article  Google Scholar 

  30. Kovacs K, Kamnev AA, Mink J, Nemeth C, Kuzmann E, Megyes T, Grosz T, Medzihradszky-Schweiger H, Vertes A (2006) Struct Chem 17:105–120

    Article  CAS  Google Scholar 

  31. Chen W, Pan X, Bao X (2007) J Am Chem Soc 129:7421–7426

    Article  CAS  Google Scholar 

  32. Sasaki K, Tanaike O, Konno H (1998) Can Mineral 36:1225–1235

    CAS  Google Scholar 

  33. Purushothaman KK, Muralidharan G (2012) J Non-Cryst Solids 358:354–359

    Article  CAS  Google Scholar 

  34. Leftheriotis G, Papaefthimiou S, Yianoulis P (2007) Solid State Ionics 178:259–263

    Article  CAS  Google Scholar 

  35. Tian B, Światowska J, Maurice V, Pereira-Nabais C, Seyeux A, Marcus P (2015) J Phys Chem C 119:919–925

    Article  CAS  Google Scholar 

  36. Srivastava AK, Deepa M, Singh S, Kishore R, Agnihotry SA (2005) Solid State Ionics 176:1161–1168

    Article  CAS  Google Scholar 

  37. Purushothaman KK, Joseph Antony S, Muralidharan G (2011) Sol Energy 85:978–984

    Article  CAS  Google Scholar 

  38. Wilkening M, Epp V, Feldhoff A, Heitjans P (2008) J Phys Chem C 112:9291–9300

    Article  CAS  Google Scholar 

  39. Liu J, Banis MN, Li X, Lushington A, Cai M, Li R, Sham T-K, Sun X (2013) J Phys Chem C 117:20260–20267

    Article  CAS  Google Scholar 

  40. Lin Y-S, Chuang P-Y, Shie P-S (2015b) J Solid State Electrochem 19:1671–1683

    Article  CAS  Google Scholar 

  41. Lin Y-S, Lu W-H, Tsai T-H, Hsieh M-H, Huang C-M, Chung T-W (2016b) Vacuum 128:56–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology of the Republic of China (MOST104-2221-E-035-076 and MOST105-2221-E-035-089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Sen Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Lin, SW., Chen, PC. et al. Enhanced lithium ionic intercalation and conduction performance of flexible iron oxide films using an atmospheric pressure plasma jet. J Solid State Electrochem 21, 2185–2200 (2017). https://doi.org/10.1007/s10008-017-3551-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3551-1

Keywords

Navigation