Skip to main content

Advertisement

Log in

Capacitive storage performance of nanorod assembly of polyaniline

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, we report a good capacitive storage performance of nanorod assembly of polyaniline (PANI). PANI was synthesized by a facile method using nanostructured γ-MnO2 as a sacrificial template as well as an oxidant. As-synthesized PANI was characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy and surface area analysis. X-ray diffraction and FTIR spectroscopic studies confirmed the formation of PANI. Microscopic studies revealed that the morphology of PANI is spherical brushes comprising of straight and radially grown nanorods of different lengths. Capacitive storage performance of PANI was studied in a mixed perchlorate electrolyte consisting of HClO4 and NaClO4. A specific capacitance of 394 F g−1 with good rate capability was obtained for nanorod assembly of PANI. The improved storage performance of PANI is attributed to its morphology, which provides easy access to the electrolyte and short diffusion path length for ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors, scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  2. Conway BE (1991) Transition from “supercapaciors” to “battery” behaviour in electrochemical energy storage. J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  3. Sarangapani S, Tilak BV, Chen CPJ (1996) Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc 143:3791–3799

    Article  CAS  Google Scholar 

  4. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  5. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  6. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  7. MacDiarmid AG, Chiang JC, Haipern M, Huang WS, Mu SL, Somasiri NL, Wu W, Yaniger SI (1985) “Polyaniline”: interconversion of metallic and insulating forms. Mol Cryst Liq Cryst 121:173–180

    Article  CAS  Google Scholar 

  8. Patil AO, Heeger AJ, Wudl F (1988) Optical properties of conducting polymers. Chem Rev 88:183–200

    Article  CAS  Google Scholar 

  9. Fusalba F, Gouerec P, Villers D, Belanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1–A6

    Article  CAS  Google Scholar 

  10. Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid-State Lett 5:H7–H10

    Article  CAS  Google Scholar 

  11. Belanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) Characterization and long-term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc 147:2923–2929

    Article  CAS  Google Scholar 

  12. Prasad KR, Munichandraiah N (2002) Potentiodynamically deposited polyaniline on stainless steel: inexpensive, high-performance electrodes for electrochemical supercapacitors. J Electrochem Soc 149:A1393–A1399

    Article  CAS  Google Scholar 

  13. Prasad KR, Munichandraiah N (2002) Electrochemical studies of polyaniline in a gel polymer electrolyte: high energy and high power characteristics of a solid-state redox supercapacitor. Electrochem Solid-State Lett 5:A271–A274

    Article  CAS  Google Scholar 

  14. Mondal SK, Barai K, Munichandraiah N (2007) High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochim Acta 52:3258–3264

    Article  CAS  Google Scholar 

  15. Raj JA, Mathiyarasu J, Vedhi C, Manisankar P (2010) Electrochemical synthesis of nanosize polyaniline from aqueous surfactant solutions. Mater Lett 64:895–897

    Article  CAS  Google Scholar 

  16. Plesu N, Kellenberger A, Mihali M, Vaszilcsin N (2010) Effect of temperature on the electrochemical synthesis and properties of polyaniline films. J Non-Cryst Solids 356:1081–1088

    Article  CAS  Google Scholar 

  17. Girija TC, Sangaranarayanan MV (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156:705–711

    Article  CAS  Google Scholar 

  18. Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of Triton X-100. J Power Sources 159:1519–1526

    Article  CAS  Google Scholar 

  19. Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112:127–131

    Article  CAS  Google Scholar 

  20. Zhou H, Chen H, Luo S, Lu G, Wei W, Kuang Y (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid State Electrochem 9:574–580

    Article  CAS  Google Scholar 

  21. Ganesan R, Shanmugam S, Gedanken A (2008) Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties. Synth Met 158:848–853

    Article  CAS  Google Scholar 

  22. Patil DS, Shaikh JS, Dalavi DS, Karanjkar MM, Devan RS, Ma YR, Patil PS (2011) An Mn doped polyaniline electrode for electrochemical supercapacitor batteries and energy storage. J Electrochem Soc 158:A653–A657

    Article  CAS  Google Scholar 

  23. Luoa Z, Zhua L, Huang Y, Tang H (2013) Effects of graphene reduction degree on capacitive performances of graphene/PANI composites. Synth Met 175:88–96

    Article  Google Scholar 

  24. Liu Y, Ma Y, Guang S, Ke F, Xu H (2015) Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 83:79–89

    Article  CAS  Google Scholar 

  25. Maser WK, Benito AM, Callejas MA, Seeger T, Martinez MT, Schreiber J, Muszynski J, Chauvet O, Osvath Z, Koos AA, Biro LP (2003) Synthesis and characterization of new polyaniline/nanotube composites. Mater Sci Eng C 23:87–91

    Article  Google Scholar 

  26. Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345–356

    Article  CAS  Google Scholar 

  27. Zhang LL, Li S, Zhang J, Guo P, Zheng J, Zhao XS (2010) Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater 22:1195–1202

    Article  CAS  Google Scholar 

  28. Zhang X, Ji L, Zhang S, Yang W (2007) Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources 173:1017–1023

    Article  CAS  Google Scholar 

  29. Sathish M, Mitani S, Tomai T, Honma I (2011) MnO2 assisted oxidative polymerization of aniline on graphene sheets: superior nanocomposite electrodes for electrochemical supercapacitors. J Mater Chem 21:16216–16222

    Article  CAS  Google Scholar 

  30. Pan LJ, Pu L, Shi Y, Song SY, Xu Z, Zhang R, Zheng YD (2007) Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Adv Mater 19:461–464

    Article  CAS  Google Scholar 

  31. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  32. Abdiryim T, Gang ZX, Jamal R (2005) Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater Chem Phys 90:367–372

    Article  CAS  Google Scholar 

  33. Moon YB, Cao Y, Smith P, Heeger AJ (1989) X-ray scattering from crystalline polyaniline. Polymer Commun 30:196–199

    CAS  Google Scholar 

  34. Pouget JP, Hsu CH, MacDiarmid AG, Epstein AJ (1998) Structural investigation of metallic PAN-CSA and some of its derivatives. Synth Met 69:119–120

    Article  Google Scholar 

  35. Gemeay AH, El-Sharkawy RG, Mansour IA, Zaki AB (2007) Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. J Colloid Interface Sci 308:385–394

    Article  CAS  Google Scholar 

  36. Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness. J Power Sources 134:148–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Science and Engineering Research Board, Department of Science and Technology, India (SB/FT/CS-025/2014), is gratefully acknowledged. SD is grateful to Prof. N. Munichandraiah for his constant support and encouragement. Significant amount of work discussed in this article was carried out at the Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Devaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaraj, S., Vardhan, P.V. Capacitive storage performance of nanorod assembly of polyaniline. J Solid State Electrochem 21, 1121–1127 (2017). https://doi.org/10.1007/s10008-016-3464-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3464-4

Keywords

Navigation