Skip to main content
Log in

On the gassing behavior of lithium-ion batteries with NCM523 cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gas evolution has a profound effect on the functioning of state-of-the-art lithium-ion batteries. On one hand, it is the natural concomitant of solid electrolyte interphase (SEI) formation on the anode (reduction of electrolyte components). On the other hand, because of the demand for high terminal voltages, it is also the consequence of electrolyte and/or cathode material oxidation. Overall, gassing happens on the expense of Coulombic efficiency and additionally raises safety issues. Herein, the gassing behavior of one of the most important commercialized cathode materials, namely Ni-rich Li1 + x Ni0.5Co0.2Mn0.3O2 (NCM523 with 0.01 < x < 0.05), is reported for the first time. We analyze the generation pattern of the most typical gases H2, C2H4, CO2, and CO during 30 cycles by means of differential electrochemical mass spectrometry combined with Fourier transform infrared spectroscopy. In a long-term test of an NCM523/graphite cell, we monitor its potential-resolved gas evolution and evaluate the total amount of gas from cycle to cycle. An explanation on the characteristic features of pressure versus time curves during cycling is given by combining the spectrometric and total gas pressure data. With additional information from graphite/lithium cells, the identity of gases formed during SEI formation is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174:449–456

    Article  CAS  Google Scholar 

  2. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  3. Berkes BB, Jozwiuk A, Sommer H, Brezesinski T, Janek J (2015) Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries. Electrochem Commun 60:64–69

    Article  CAS  Google Scholar 

  4. Michalak B, Berkes BB, Sommer H, Bergfeldt T, Brezesinski T, Janek J (2016) Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements. Anal Chem 88:2877–2883

    Article  CAS  Google Scholar 

  5. Wang H, Rus E, Sakuraba T, Kikuchi J, Kiya Y, Abruña HD (2014) CO2 and O2 evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Anal Chem 86:6197–6201

    Article  CAS  Google Scholar 

  6. Metzger M, Marino C, Sicklinger J, Haering D, Gasteiger HA (2015) Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry. J Electrochem Soc 162:A1123–A1134

    Article  CAS  Google Scholar 

  7. Ota H, Sakata Y, Inoue A, Yamaguchi S (2004) Analysis of vinylene carbonate derived SEI layers on graphite anode. J Electrochem Soc 151:A1659–A1669

    Article  CAS  Google Scholar 

  8. Bernhard R, Meini S, Gasteiger HA (2014) On-line electrochemical mass spectrometry investigations on the gassing behavior of Li4Ti5O12 electrodes and its origins. J Electrochem Soc 161:A497–A505

    Article  CAS  Google Scholar 

  9. Kumai K, Miyashiro H, Kobayashi Y, Takei K, Ishikawa R (1999) Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J Power Sources 81–82:715–719

    Article  Google Scholar 

  10. Lanz P, Sommer H, Schulz-Dobrick M, Novák P (2013) Oxygen release from high-energy xLi2MnO3·(1 − x)LiMO2 (M = Mn, Ni, Co): electrochemical, differential electrochemical mass spectrometric, in situ pressure, and in situ temperature characterization. Electrochim Acta 93:114–119

    Article  CAS  Google Scholar 

  11. Onuki M, Kinoshita S, Sakata Y, Yanagidate M, Otake Y, Ue M, Deguchi M (2008) Identification of the source of evolved gas in Li-ion batteries using 13C-labeled solvents. J Electrochem Soc 155:A794–A797

    Article  CAS  Google Scholar 

  12. He Y-B, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang Q-H, Kim J-K, Kang F (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports 2:913

    Google Scholar 

  13. Berkes BB, Jozwiuk A, Vračar M, Sommer H, Brezesinski T, Janek J (2015) On-line continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests. Anal Chem 87:5878–5883

    Article  CAS  Google Scholar 

  14. Marom R, Haik O, Aurbach D, Halalay IC (2010) Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries. J Electrochem Soc 157:A972–A983

    Article  CAS  Google Scholar 

  15. Xing L, Borodin O (2012) Oxidation induced decomposition of ethylene carbonate from DFT calculations—importance of explicitly treating surrounding solvent. Phys Chem Chem Phys 14:12838–12843

    Article  CAS  Google Scholar 

  16. Chusid O, Ein Ely E, Aurbach D, Babai M, Carmeli Y (1993) Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems. J Power Sources 43:47–64

    Article  CAS  Google Scholar 

  17. Jozwiuk A, Berkes BB, Weiß T, Sommer H, Janek J, Brezesinski T (2016) The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy Environ Sci 9:2603–2608

    Article  CAS  Google Scholar 

  18. Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y, Yamin H (1995) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite Electrodes J Electrochem Soc 142:2882–2890

    Article  CAS  Google Scholar 

  19. Edström K, Andersson AM, Bishop A, Fransson L, Lindgren J, Hussénius A (2001) Carbon electrode morphology and thermal stability of the passivation layer. J Power Sources 97–98:87–91

    Article  Google Scholar 

  20. Aurbach D, Ein-Eli Y, Chusid O, Carmeli Y, Babai M, Yamin H (1994) The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable ‘rocking-chair’ type batteries. J Electrochem Soc 141:603–611

    Article  CAS  Google Scholar 

  21. Chiang P-CJ WM-S, Lin J-C (2005) A novel dual-current formation process for advanced lithium-ion batteries. Electrochem Solid-State Lett 8:A423–A427

    Article  Google Scholar 

  22. Lee H-H, Wang Y-Y, Wan C-C, Yang M-H, Wu H-C, Shieh D-T (2004) A fast formation process for lithium batteries. J Power Sources 134:118–123

    Article  CAS  Google Scholar 

  23. Campion CL, Li W, Lucht BL (2005) Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc 152:A2327–A2334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of projects being funded within the BASF International Network for Batteries and Electrochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs B. Berkes.

Electronic supplementary material

ESM 1

(DOCX 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkes, B.B., Schiele, A., Sommer, H. et al. On the gassing behavior of lithium-ion batteries with NCM523 cathodes. J Solid State Electrochem 20, 2961–2967 (2016). https://doi.org/10.1007/s10008-016-3362-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3362-9

Keywords

Navigation