Skip to main content
Log in

Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped functional graphene nanocomposites (GO-MRF-x) for electrode materials in a capacitive deionization (CDI) application were conveniently prepared through a sol–gel polycondensation reaction catalyzed by Na2CO3 under ambient pressure drying. The materials showed high surface functionalization (N and O groups) which were confirmed by X-ray photoelectron spectroscopy (XPS). The molar ratio of melamine with resorcinol had a marked effect on the specific surface area and porosity of the nanocomposites. The characterization results showed that with the specific surface area of 387 m2 g−1 and N content of 7.26 wt%, laminated GO-MRF-0.8 material exhibited a good performance with high specific capacitance (222 F g−1), low charge-transfer resistance (0.10 Ω), and electrosorption capacity (16.72 mg g−1). Furthermore, the electrosorption isotherms were studied, and it was found that the ion electrosorption behavior of NaCl on GO-MRF-0 followed multilayer adsorption, whereas GO-MRF-0.8 exhibited a change from monolayer to multilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  Google Scholar 

  2. Moonkhum M, Lee YG, Lee YS, Kim JH (2010) Review of seawater natural organic matter fouling and reverse osmosis transport modeling for seawater reverse osmosis desalination. Desalin Water Treat 15(1–3):92–107

    Article  CAS  Google Scholar 

  3. Welgemoed T, Schutte C (2005) Capacitive deionization technology™: an alternative desalination solution. Desalination 183(1):327–340

    Article  CAS  Google Scholar 

  4. Bandosz TJ (2006) Activated carbon surfaces in environmental remediation, vol 7. Academic press, San Diego

    Google Scholar 

  5. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19(11):1800–1809

    Article  CAS  Google Scholar 

  6. Wu Y, Fang S, Jiang Y (1999) Effects of nitrogen on the carbon anode of a lithium secondary battery. Solid State Ionics 120(1):117–123

    Article  CAS  Google Scholar 

  7. Tian G, Liu L, Meng Q, Cao B (2015) Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping. J Power Sources 274:851–861

    Article  CAS  Google Scholar 

  8. Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D (2007) Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon 45(9):1757–1763

    Article  CAS  Google Scholar 

  9. Doi Y, Takai A, Makino S, Radhakrishnan L, Suzuki N, Sugimoto W, Yamauchi Y, Kuroda K (2010) Synthesis of mesoporous carbon using a fullerenol-based precursor solution via nanocasting with SBA-15. Chem Lett 39(7):777–779

    Article  CAS  Google Scholar 

  10. Vikkisk M, Kruusenberg I, Joost U, Shulga E, Kink I, Tammeveski K (2014) Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Appl Catal B Environ 147:369–376

    Article  CAS  Google Scholar 

  11. Chen A, Yu Y, Zhang Y, Zang W, Yu Y, Zhang Y, Shen S, Zhang J (2014) Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases. Carbon 80:19–27

    Article  CAS  Google Scholar 

  12. Song X, Lin L, Rong M, Wang Y, Xie Z, Chen X (2014) Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel. Carbon 80:174–182

    Article  CAS  Google Scholar 

  13. Dreyer DR, Jia HP, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem 122(38):6965–6968

    Article  Google Scholar 

  14. Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20(34):7114–7117

    Article  Google Scholar 

  15. Kim KS, Park SJ (2012) Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor. J Electroanal Chem 673(1):58–64

    Article  CAS  Google Scholar 

  16. Xu X, Pan L, Yong L, Lu T, Zhuo S (2015) Enhanced capacitive deionization performance of graphene by nitrogen doping. J Colloid Interface Sci 445:143–150

    Article  CAS  Google Scholar 

  17. Liu Y, Chen T, Lu T, Sun Z, Chua DH, Pan L (2015) Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochim Acta 158:403–409

    Article  CAS  Google Scholar 

  18. Qian T, Yu C, Wu S, Shen J (2013) A facilely prepared polypyrrole–reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes. J Mater Chem A 1(22):6539–6542

    Article  CAS  Google Scholar 

  19. Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  20. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  21. Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355

    Article  CAS  Google Scholar 

  22. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  23. Khalid B, Meng Q, Li J, Cao B (2014) Nitrogen rich graphene-cross-linked melamine formaldehyde carbon cryogels for supercapacitors. Electrochim Acta 142:101–107

    Article  CAS  Google Scholar 

  24. Liu L, Yang J, Meng Q (2013) Graphene cross-linked phenol–formaldehyde hybrid organic and carbon xerogel during ambient pressure drying. J Sol-Gel Sci Technol 66(1):1–5

    Article  CAS  Google Scholar 

  25. Xiong W, Liu M, Gan L, Lv Y, Xu Z, Hao Z, Chen L (2012) Preparation of nitrogen-doped macro−/mesoporous carbon foams as electrode material for supercapacitors. Colloids Surf A Physicochem Eng Asp 411:34–39

    Article  CAS  Google Scholar 

  26. Deng Q-F, Liu L, Lin X-Z, Du G, Liu Y, Yuan Z-Y (2012) Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chem Eng J 203:63–70

    Article  CAS  Google Scholar 

  27. Dong B, Zhang X, Xu X, Gao G, Ding S, Li J, Li B (2014) Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80:222–228

    Article  CAS  Google Scholar 

  28. Zhai Y, Dou Y, Liu X, Park SS, Ha C-S, Zhao D (2011) Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon 49(2):545–555

    Article  CAS  Google Scholar 

  29. Devallencourt C, Saiter J, Fafet A, Ubrich E (1995) Thermogravimetry/Fourier transform infrared coupling investigations to study the thermal stability of melamine formaldehyde resin. Thermochim Acta 259(1):143–151

    Article  CAS  Google Scholar 

  30. Luo W, Li Y, Dong J, Wei J, Xu J, Deng Y, Zhao D (2013) A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. Angew Chem Int Ed 52(40):10505–10510

    Article  CAS  Google Scholar 

  31. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem 124(45):11533–11537

    Article  Google Scholar 

  32. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  CAS  Google Scholar 

  33. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477

    Article  CAS  Google Scholar 

  34. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18(9):2318–2326

    Article  CAS  Google Scholar 

  35. Frackowiak E (2007) Carbon materials for supercapacitor application. PCCP 9(15):1774–1785

    Article  CAS  Google Scholar 

  36. Sun H, Cao L, Lu L (2012) Bacteria promoted hierarchical carbon materials for high-performance supercapacitor. Energy Environ Sci 5(3):6206–6213

    Article  CAS  Google Scholar 

  37. Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu Z-Y, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Article  CAS  Google Scholar 

  38. Hsieh C-T, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5):667–674

    Article  CAS  Google Scholar 

  39. Ho C-L, Wu M-S (2011) Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high-performance supercapacitors. J Phys Chem C 115(44):22068–22074

    Article  CAS  Google Scholar 

  40. Xu F, Zheng G, Wu D, Liang Y, Li Z, Fu R (2010) Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler. PCCP 12(13):3270–3275

    Article  CAS  Google Scholar 

  41. Sivakkumar S, Kim WJ, Choi J-A, MacFarlane DR, Forsyth M, Kim D-W (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171(2):1062–1068

    Article  CAS  Google Scholar 

  42. Park K-K, Lee J-B, Park P-Y, Yoon S-W, Moon J-S, Eum H-M, Lee C-W (2007) Development of a carbon sheet electrode for electrosorption desalination. Desalination 206(1):86–91

    Article  CAS  Google Scholar 

  43. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  CAS  Google Scholar 

  44. Rasines G, Lavela P, Macías C, Zafra MC, Tirado JL, Ania CO (2015) On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochim Acta 170:154–163

    Article  CAS  Google Scholar 

  45. Rasines G, Lavela P, Macías C, Zafra MC, Tirado JL, Parra JB, Ania CO (2015) N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon 83:262–274

    Article  CAS  Google Scholar 

  46. Zidar J, Pavlin M, Mihelič I, Ogorelec P, Plavec J, Mavri J (2013) Stability and reactivity of progressively methylolated melamine derivatives. Comput Theor Chem 1006(1006):85–91

    Article  CAS  Google Scholar 

  47. Wang Z, Dou B, Zheng L, Zhang G, Liu Z, Hao Z (2012) Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 299(4):96–102

    Article  CAS  Google Scholar 

  48. Kim T, Yoon J (2015) CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Adv 5(2):1456–1461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to acknowledge the generous financial support of this research by the National Natural Science Foundation of China (51372011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Huo, Y., Tian, G. et al. Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions. J Solid State Electrochem 20, 2351–2362 (2016). https://doi.org/10.1007/s10008-016-3251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3251-2

Keywords

Navigation