Skip to main content
Log in

Enhanced electrochemical performance of LiFePO4/C nanocomposites due to in situ formation of Fe2P impurities

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have studied LiFePO4/C nanocomposites prepared by sol-gel method using lauric acid as a surfactant and calcined at different temperatures between 600 and 900 °C. In addition to the major LiFePO4 phase, all the samples show a varying amount of in situ Fe2P impurity phase characterized by x-ray diffraction, magnetic measurements, and Mössbauer spectroscopy. The amount of Fe2P impurity phase increases with increasing calcination temperature. Of all the samples studied, the LiFePO4/C sample calcined at 700 °C which contains ∼15 wt% Fe2P shows the least charge transfer resistance and a better electrochemical performance with a discharge capacity of 136 mA h g−1 at a rate of 1 C, 121 mA h g−1 at 10 C (∼70 % of the theoretical capacity of LiFePO4), and excellent cycleability. Although further increase in the amount of Fe2P reduces the overall capacity, frequency-dependent Warburg impedance analyses show that all samples calcined at temperatures ≥700 °C have an order of magnitude higher Li+ diffusion coefficient (∼1.3 × 10−13 cm2 s−1) compared to the one calcined at 600 °C, as well as the values reported in literature. This work suggests that controlling the reduction environment and the temperature during the synthesis process can be used to optimize the amount of conducting Fe2P for obtaining the best capacity for the high power batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy K, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  3. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  4. Huang H, Faulkner T, Barker J, Saidi MY (2009) J Power Sources 189:748–751

    Article  CAS  Google Scholar 

  5. Tarascon JM, Recham N, Armand M, Chotard JN, Barpanda P, Walker W, Dupont L (2010) Chem Mater 22:724–739

    Article  CAS  Google Scholar 

  6. Wang YG, He P, Zhou HS (2011) Energy Environ Sci 4:805–817

    Article  CAS  Google Scholar 

  7. Julien CM, Zaghib K, Mauger A, Groult H (2012) Adv Chem Eng Sci 2:321–329

    Article  CAS  Google Scholar 

  8. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) J Power Sources 163:180–184

    Article  CAS  Google Scholar 

  9. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) J Electrochem Soc 152:A607–A610

    Article  CAS  Google Scholar 

  10. Dominko R, Bele M, Goupil JM, Gaberscek M, Hanzel D, Arcon I, Jamnik J (2007) Chem Mater 19:2960–2969

    Article  CAS  Google Scholar 

  11. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Nat Mater 7:665–671

    Article  CAS  Google Scholar 

  12. Gibot RP, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C (2008) Nat Mater 7:741–747

    Article  CAS  Google Scholar 

  13. Hsu KF, Tsay SY, Hwang BJ (2004) J Mater Chem 14:2690–2695

    Article  CAS  Google Scholar 

  14. Croce F, D’Epifanio A, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) Electrochem Solid State Lett 5:A47–A50

    Article  CAS  Google Scholar 

  15. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147–152

    Article  CAS  Google Scholar 

  16. Meethong N, Kao YH, Speakman SA, Chiang YM (2009) Adv Funct Mater 19:1060–1070

    Article  CAS  Google Scholar 

  17. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid -State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  18. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  19. Ellis B, Herle PS, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Farad Discuss 134:119–141

    Article  CAS  Google Scholar 

  20. Lee KT, Lee KS (2009) J Power Sources 189:435–439

    Article  CAS  Google Scholar 

  21. Song MS, Kim DY, Kang YM, Kim YI, Lee JY, Kwon HS (2008) J Power Sources 180:546–552

    Article  CAS  Google Scholar 

  22. Xu Y, Lu Y, Yan L, Yang Z, Yang R (2006) J Power Sources 160:570–576

    Article  CAS  Google Scholar 

  23. Qiu Y, Geng Y, Yu J, Zuo X (2014) J Mater Sci 49:504–509

    Article  CAS  Google Scholar 

  24. Liu H, Xie J, Wang K (2008) Solid State Ionics 179:1768–1771

    Article  CAS  Google Scholar 

  25. Liu Y, Cao C, Li J, Xu X (2010) J Appl Electrochem 40:419–425

    Article  CAS  Google Scholar 

  26. Rahman MM, Wang J, Zeng R, Wexler D, Liu HK (2012) J Power Sources 206:259–266

    Article  CAS  Google Scholar 

  27. Kim CW, Park JS, Lee KS (2006) J Power Sources 163:144–150

    Article  CAS  Google Scholar 

  28. Rho YH, Nazar LF, Perry L, Ryan D (2007) J Electrochem Soc 154:A283–A289

    Article  CAS  Google Scholar 

  29. Lin Y, Gao MX, Zhu D, Liu YF, Pan HG (2008) J Power Sources 184:444–448

    Article  CAS  Google Scholar 

  30. Dhindsa KS, Mandal BP, Bazzi K, Lin MW, Nazri M, Nazri GA, Naik VM, Garg VK, Oliveira AC, Vaishnava P, Naik R, Zhou ZX (2013) Solid State Ionics 253:94–100

    Article  CAS  Google Scholar 

  31. Wappling R, Haggstrom L, Ericsson T, Devanarayanan S, Karlsson E, Carlsson B, Rundqvist S (1974) J De Physique 35:C6–597

    Google Scholar 

  32. Muthuswamy E, Kharel PR, Lawes G, Brock SL (2009) ACS Nano 3:2383–2393

    Article  CAS  Google Scholar 

  33. Luo F, Su HL, Song W, Wang ZM, Yan ZG, Yan CH (2004) J Mater Chem 14:111–115

    Article  CAS  Google Scholar 

  34. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  35. Ericsson T, Haggstrom L, Wappling R, Methasiri (1980) Physical Scripta 21:212–216

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulker LR (2001) Electrochemical Methods-Fundamental and Applications, 2ndEd. Wiley, New York

    Google Scholar 

  37. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45–51

    Article  CAS  Google Scholar 

  38. Kumar A, Thomas R, Karan NK, Saavedra-Arias JJ, Singh MK, Majumder SB, Tomar MS, Katiyar RS (2009) J Nanotech 2009: Article ID 176517, Doi:10.1155/2009/176517

  39. Yu D, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Electrochem Soc 154:A253–A257

    Article  CAS  Google Scholar 

  40. Pang L, Zhao M, Zhao X, Chai Y (2012) J Power Sources 201:253–258

    Article  CAS  Google Scholar 

  41. Levi MD, Lu Z, Aurbach D (2001) Solid State Ionics 143:309–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Richard Barber Foundation for financial support to perform this work. We also thank Dr. Federico Rabuffetti at Wayne State University for useful discussions regarding Rietveld fitting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhindsa, K.S., Kumar, A., Nazri, G.A. et al. Enhanced electrochemical performance of LiFePO4/C nanocomposites due to in situ formation of Fe2P impurities. J Solid State Electrochem 20, 2275–2282 (2016). https://doi.org/10.1007/s10008-016-3239-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3239-y

Keywords

Navigation