Skip to main content
Log in

Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube-modified electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of fipronil is investigated on unmodified and multi-walled carbon-nanotube (MWCNT)-modified glassy carbon electrodes (GCEs), and its amperometric determination using batch injection analysis (BIA) is demonstrated. An oxidation peak was observed at 1.5 V in a 0.1 mol L−1 HClO4/acetone solution (50:50, v/v) on both surfaces. Although MWCNT-modified GCE provided greater sensitivity, the unmodified GCE showed low RSD value, wider linear range, and reduced adsorption of fipronil or its oxidized products on the electrode surface. A detection limit of 4.7 μmol L−1 and linear range of 25–300 μmol L−1 were obtained using a bare GCE. The method was applied in veterinary formulations with results in agreement with those obtained by high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sannino A, Bolzoni L, Bandini M (2004) J Chromatogr A 1036:161–169

    Article  CAS  Google Scholar 

  2. Bobe A, Coste CMJ, Cooper JF (1997) J Agric Food Chem 45:4861–4865

    Article  CAS  Google Scholar 

  3. Pesticides residues in food and feed. Codex Pesticides Residues in Food Online Database (2013). http://www.codexalimentarius.net/pestres/data/index.html. Accessed June 2015.

  4. Lima WS, Malacco MAF, Bordin EL, Oliveira EL (2004) Vet Parasitol 125:373–377

    Article  CAS  Google Scholar 

  5. Pollmeier M, Pengo G, Longo M, Jeannin P (2004) Vet Parasitol 121:157–165

    Article  CAS  Google Scholar 

  6. Payne PA, Dryden MW, Smith V, Ridley RK (2001) Vet Parasitol 102:331–340

    Article  CAS  Google Scholar 

  7. Davoust B, Marié JL, Mercier S, Boni M, Vandeweghe A, Parzy DF, Beugnet FBF (2003) Vet Parasitol 112:91–100

    Article  CAS  Google Scholar 

  8. Davey RB, Ahrens EH, George JE, Hunter III JE, Jeannin P (1998) Vet Parasitol 74:261–276

    Article  CAS  Google Scholar 

  9. Morzycka B (2002) J Chromatogr A 982:267–273

    Article  CAS  Google Scholar 

  10. Cheng Y, Dong F, Liu X, Xu J, Meng W, Liu N, Chen Z, Tao Y, Zheng T (2014) Anal Methods 6:1788–1795

    Article  CAS  Google Scholar 

  11. Mandal K, Kousik R, Singh B (2014) J Liq Chromatogr R T 37:2746–2755

    Article  CAS  Google Scholar 

  12. Duhan A, Kumari B, Duhan S (2015) Bull Environ Contam Toxicol 94:260–266

    Article  CAS  Google Scholar 

  13. Kurz MHS, Martel S, Gonçalves FF, Prestes OD, Martins ML, Zanella R, Adaime MB (2013) J Braz Chem Soc 24:631–638

    CAS  Google Scholar 

  14. Sid YP, Ferreira TP, Medeiros DMVC, Oliveira RM, Silva NCC, Magalhães VS, Scott FB (2012) Quím Nov. 35:2063–2066

  15. Ramasubramanian T, Paramasivam M, Jayanthi R, Chandrasekaran S (2014) Food Chem 150:408–413

    Article  CAS  Google Scholar 

  16. Qiu K, Song X, Tang G, Wu L, Min S (2013) Anal Lett 46:2388–2399

    Article  CAS  Google Scholar 

  17. Da Silva RAB, Gimenes DT, Tormin TF, Munoz RAA, Richter EM (2011) Anal Methods 3:2804–2808

    Article  Google Scholar 

  18. Dornellas RM, Tormin TF, Richter EM, Aucelio RQ, Munoz RAA (2014) Anal Lett 47:492–503

    Article  CAS  Google Scholar 

  19. Dornellas RM, Munoz RAA, Aucelio RQ (2015) Microchem J 123:1–8

    Article  CAS  Google Scholar 

  20. Gimenes DT, Pereira PF, Cunha RR, Da Silva RAB, Munoz RAA, Richter EM (2012) Electroanalysis 24:1805–1810

    Article  CAS  Google Scholar 

  21. Stefano JS, Lima AP, Montes RHO, Richter EM, Munoz RAA (2012) J Braz Chem Soc 23:1834–1838

    Article  CAS  Google Scholar 

  22. Montes RHO, Marra MC, Rodrigues MM, Ricther EM, Muñoz RAA (2014) Electroanalysis 26:432–438

    Article  CAS  Google Scholar 

  23. Ji X, Kadara RO, Krussna J, Chen Q, Banks CE (2010) Electroanalysis 22:7–19

    Article  CAS  Google Scholar 

  24. Den W, Liu HC, Chan SF, Kin KT, Huang C (2006) J Env Eng Manag 16:275–282

    CAS  Google Scholar 

  25. Vuković G, Marinković A, Obradović M, Radmilović V, Čolić M, Aleksić R, Uskoković PS (2009) Appl Surf Sci 255:8067–8075

    Article  Google Scholar 

  26. Cardoso RM, Montes RHO, Lima AP, Dornellas RM, Nossol E, Richter EM, Munoz RAA (2015) Electrochim Acta 176:36–43

    Article  CAS  Google Scholar 

  27. Pedrotti JJ, Angnes L, Gutz IGR (1996) Electroanalysis 8:673–675

    Article  Google Scholar 

  28. Silva RAB, Montes RHO, Richter EM, Munoz RAA (2012) Food Chem 133:200–204

    Article  CAS  Google Scholar 

  29. Pereira PF, Marra MC, Munoz RAA, Richter EM (2012) Talanta 90:99–112

    Article  CAS  Google Scholar 

  30. Quintino MSM, Angnes L (2004) Electroanalysis 16:513–523

    Article  CAS  Google Scholar 

  31. Neagu M, Soceanu G, Bucur A, Tanase A (2015) Int J Pharm Sci Drug Res 7:123–125

    Google Scholar 

  32. Souza D, Machado SAS, Avaca LA (2003) Quím. Nov. 26:81–89

  33. Bard AJ, Faulkner LR (2004) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  34. Oztekin Y, Ramanaviciene A, Yazicigil Z, Solak AO, Ramanavicius A (2011) Biosens Bioelectron 26:2541–2546

    Article  CAS  Google Scholar 

  35. Li M, Li P, Feng M, Han L (2015) J Agric Food Chem 63:4435–4443

    Article  CAS  Google Scholar 

  36. Lourencao BC, Baccarin M, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2013) J Electroanal Chem 707:15–19

    Article  CAS  Google Scholar 

  37. Ramesh A, Balasubramanian M (1999) J Agric Food Chem 47:3367–3371

    Article  CAS  Google Scholar 

  38. Brett CMA, Brett AMO, Mitoseriu LC (1995) Electroanalysis 7:225–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPEMIG (PPM-00236-12), CNPq (308174/2013-5 and 481086/2012-9), and CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo A. A. Munoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes, R.H.O., Dornellas, R.M., Silva, L.A.J. et al. Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube-modified electrodes. J Solid State Electrochem 20, 2453–2459 (2016). https://doi.org/10.1007/s10008-015-3085-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3085-3

Keywords

Navigation