Skip to main content
Log in

Square wave stripping voltammetric determination of cyprodinil fungicide in food samples by nanostructured multi walled carbon nanotube paste electrode

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Cyprodinil is a fungicide from an anilinopyrimidine group and is widely used in agricultural fields to control fungi that are harmful to vegetables and plants, and therefore requires a reliable, sensitive and selective method for its analysis in food samples. The electrochemical behavior of cyprodinil was investigated by square wave stripping and cyclic voltammetric techniques by using both glassy carbon electrode and multi-walled carbon nano tube paste electrode (MWCNTPE). Prior to analytical determinations, parameters such as pH, frequency, deposition time and deposition potentials were optimized. The oxidation peak potential of cyprodinyl fungicide was + 1160 mV (vs Ag/AgCl). The linear dynamic range was 0.25–4.0 mg/L. The limit of detection and the limit of quantification were calculated as 0.076 and 0.25 mg/L, respectively. In addition, the interference effects of other fungicides in the same class with cyprodinil (pyrimidine fungicides) such as pyrimethanil, nuarimol, fenarimol and another class of dioxacarb (carbamate insecticide) were also investigated. The recommended electroanalytical method was successfully applied to the commercial formulation of Fragman®50 WG containing 50% cyprodinil and apple juice and tap water samples. The percentage of cyprodinil in commercial formulation was calculated as 50.3 ± 3.5% with a relative standard deviation of 6.9% and relative error of 0.65, respectively. The calculated relative standard deviations and high recoveries indicate that the accuracy and precision of the recommended method for is highly acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Fritz, C. Lanen, V. Colas, P. Leroux, Pest. Sci. 49, 40 (1997)

    CAS  Google Scholar 

  2. F. Waechter, E. Weber, T. Hertner, U. May-Hertl, Hayes' Handbook of Pesticide Toxicology, 3rd edn. (Academic Press, Cambridge, MA, 2010)

    Google Scholar 

  3. C. Liu, S. Wang, L. Li, J. Ge, S. Jiang, F. Liu, Bull. Environ. Contam. Toxicol. 86, 323 (2011)

    CAS  PubMed  Google Scholar 

  4. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, J. Colloid Interface Sci. 554, 603 (2019)

    CAS  PubMed  Google Scholar 

  5. M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, J. Mol. Liq. 278, 672 (2019)

    CAS  Google Scholar 

  6. F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Compos. B 172, 666 (2019)

    CAS  Google Scholar 

  7. A. Khodadadi, E. Faghihmirzaei, H. Karimimaleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, Sens. Actuators B 284, 568 (2019)

    CAS  Google Scholar 

  8. S. Cheraghi, M.A. Taher, H. Karimi-Maleh, J. Food Compos. Anal. 62, 254 (2017)

    CAS  Google Scholar 

  9. Z. Shamsadin-Azad, M.A. Taher, S. Cheraghi, H. Karimi-Maleh, J. Food Meas. Charact. 13, 1781 (2019)

    Google Scholar 

  10. E. Demir, Electroanalysis 31, 1545 (2019)

    Google Scholar 

  11. A.A. Ensafi, S. Dadkhah-Tehrani, H. Karimi-Maleh, Anal. Sci. 27, 409 (2011)

    CAS  PubMed  Google Scholar 

  12. M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi, J. Food Meas. Charact. 12, 634 (2018)

    Google Scholar 

  13. A.A. Ensafi, H. Karimi-Maleh, Int. J. Electrochem. Sci. 5, 392 (2010)

    CAS  Google Scholar 

  14. A.A. Ensafi, H. Karimi-Maleh, Int. J. Electrochem. Sci. 5, 1484 (2010)

    CAS  Google Scholar 

  15. Y. Deng, H. Zheng, X. Yi, C. Shao, B. Xiang, S. Wang, Z. Zhao, X. Zhang, G. Hui, Int. J. Food Prop. 22, 890 (2019)

    CAS  Google Scholar 

  16. I.C. Cheng, A.M. Scr. Mater. 69, 295 (2013)

    CAS  Google Scholar 

  17. Z. Xiaohong, Z. Zhidong, L. Xiongwei, L. Jian, H. Guohua, J. Food Meas. Charact. 11, 548 (2017)

    Google Scholar 

  18. H. Feng, Z. Huang, X. Lou, J. Li, G. Hui, Food Anal. Methods 10, 407 (2017)

    Google Scholar 

  19. G. Hui, J. Zhang, J. Li, Le Zheng. Food Chem. 197, 1168 (2016)

    CAS  PubMed  Google Scholar 

  20. J. Jiaojiao, G. Yangyang, Z. Gangying, C. Yanping, L. Wei, H. Guohua, Food Chem. 175, 485 (2015)

    PubMed  Google Scholar 

  21. F.A. Esteve-Turrillas, J.V. Mercader, C. Agulló, A. Abad-Somovilla, A. Abad-Fuentes, Analyst 142, 3975 (2017)

    CAS  PubMed  Google Scholar 

  22. S. Armentaa, M. de la Guardiaa, A. Abadfuentes, A. Abadsomovillac, F.A. Esteveturrillas, J. Chromatogr. A 1426, 110 (2015)

    Google Scholar 

  23. A. Francesc, E. Turrillas, J.V. Mercader, C. Agullo, A. Abad-Somovilla, A. Abad-Fuentes, Food Sci. Technol. 63, 604 (2015)

    Google Scholar 

  24. R.M. Gonzalezrodriguez, R. Rialotero, B. Canchogrande, J. Chromatogr. A 1196, 109 (2018)

    Google Scholar 

  25. A. Navalon, A. Prieto, L. Araujo, J.L. Vilchez, J. Chromatogr. 975, 355 (2002)

    CAS  Google Scholar 

  26. A.K. Psoma, I.N. Pasias, A.A. Bletsou, N.S. Thomaidis, Food Anal. Methods 8, 624 (2015)

    Google Scholar 

  27. X. Lianga, X. Liua, F. Donga, J. Xua, D. Qin, Y. Li, Y. Tian, Y. Zhang, Y. Han, Y. Zheng, Food Addit. Contam. 30, 713 (2013)

    Google Scholar 

  28. C.F. Silvafilho, E.S. Emídio, H.S. Dórea, J. Braz. Chem. Soc. 22, 1371 (2011)

    CAS  Google Scholar 

  29. M. Navarro, Y. Pico, R. Marin, J. Manes, J. Chromatogr. A 968, 201 (2002)

    CAS  PubMed  Google Scholar 

  30. R. Rialotero, C. Yagueruiz, B. Canchogrande, J. Simalgandara, J. Chromatogr. A 942, 41 (2002)

    CAS  Google Scholar 

  31. A.R. Fontanaa, I. Rodríguez, M. Ramil, J.C. Altamiranoa, R. Cela, J. Chromatogr. A 1218, 2165 (2011)

    Google Scholar 

  32. C. Molinamayo, J. Hernándezborges, T.M. Borgesmiquel, J. Chromatogr. A 1150, 355 (2007)

    Google Scholar 

  33. L. Vaquero-Fernandez, A. Saenz-Hernaez, J. Sanz-Asensio, P. Fernandez-Zurbano, M. Sainz-Ramirez, B. Pons-Jubera, M. Lopez-Alonso, S.I. Epifanio-Fernandez, M.T. Martinez-Soria, J. Sci. Food. Agric. 88, 1943 (2008)

    CAS  Google Scholar 

  34. I. Giza, U. Sztwiertnia, M. Murawska, Acta Chromatographica 11, 37 (2011)

    Google Scholar 

  35. M.S. Munitza, S.L. Resnik, M.I.T. Monttia, Food Additi Contam 30, 1299 (2013)

    Google Scholar 

  36. J.M.G. Garrido, V. Rahemi, F. Borges, C.M.A. Brett, E.M.P.J. Garrido, Food Control 60, 7 (2016)

    CAS  Google Scholar 

  37. J. Yang, Q. Wang, M. Zhang, S. Zhang, L. Zhang, Food Chem. 187, 1 (2015)

    PubMed  Google Scholar 

  38. L. Yang, Y. Hu, Q. Wang, Y. Dong, L. Zhang, Anal. Chim. Acta 935, 104 (2016)

    CAS  PubMed  Google Scholar 

  39. European Food Safety Authority, EFSA J. 11, 3406 (2013)

    Google Scholar 

  40. E. Demir, R. İnam, Food Anal. Methods. 10, 74 (2017)

    Google Scholar 

  41. T. Sarigül, R. İnam, H.Y. Aboul-Enein, Talanta 82, 1814 (2010)

    PubMed  Google Scholar 

  42. M.P.N. Bui, S.S. Seo, J. Appl. Electrochem. 45, 365 (2015)

    CAS  Google Scholar 

  43. E. Demir, O. İnam, R. İnam, Anal. Sci. 34, 771 (2018)

    CAS  PubMed  Google Scholar 

  44. E. Demir, O. İnam, R. İnam, H.Y. Aboul-Enein, Curr. Anal. Chem. 14, 83 (2018)

    CAS  Google Scholar 

  45. O. İnam, E. Demir, B. Uslu, Curr. Pharm. Anal. (2019). https://doi.org/10.2174/1573412915666190225163637

    Article  Google Scholar 

  46. M.S.S. Morante, Z.D. Pérez, Q.I. Sierra, Sens. Actuators B 283, 434 (2019)

    Google Scholar 

  47. E. Laviron, L. Roullier, C. Degrand, J. Electroanal. Chem. 112, 1 (1980)

    CAS  Google Scholar 

  48. M. Lovric, S. Komorsky-Lovric, J. Electroanal. Chem. 248, 239 (1988)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recai İnam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayhan, E.A., İnam, R. Square wave stripping voltammetric determination of cyprodinil fungicide in food samples by nanostructured multi walled carbon nanotube paste electrode. Food Measure 14, 1333–1343 (2020). https://doi.org/10.1007/s11694-020-00381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00381-9

Keywords

Navigation