Skip to main content
Log in

Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The ethanol oxidation reaction in 0.1 M NaOH on Pt nanoparticles with different shapes and loadings was investigated using electrochemical and spectroscopic techniques. The surface structure effect on this reaction was studied using well-characterized platinum nanoparticles. Regardless of the type of Pt nanoparticles used, results show that acetate is the main product with negligible CO2 formation. From the different samples used, the nanoparticles with a large amount (111) of ordered domains have higher peak currents and a higher onset potential, in agreement with previous works with single crystal electrodes. In addition, spherical platinum nanoparticles supported on carbon with different loadings were used for studying possible diffusional problems of ethanol to the catalyst surface. The activity in these samples diminishes with the increase of Pt loading, due to diffusional problems of ethanol throughout the whole Pt nanoparticle layer, being the internal part of the catalyst layer inactive for the oxidation. To avoid this problem and prepare more dispersed nanoparticle catalyst layers, deposits were dried while the carbon support was rotated to favor the dispersion of the layer around the support. The improvement in the electrocatalytic activity for ethanol oxidation confirms the better performance of this procedure for depositing and drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Koper MTM (2009) Fuel cell catalysis: a surface science approach. Electrocatalysis and electrochemistry. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  2. Parsons R, Vandernoot T (1988) J Electroanal Chem 257:9–45

    Article  CAS  Google Scholar 

  3. Lamy C, Leger JM (1991) J Chim Phys Phys-Chim Biol 88:1649–1671

    CAS  Google Scholar 

  4. Feliu JM, Herrero E (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 2. John Wiley & Sons, Ltd., Chichester, pp 625–634

    Google Scholar 

  5. Iwasita T (2002) Electrochim Acta 47:3663–3674

    Article  CAS  Google Scholar 

  6. Orts JM, Fernandezvega A, Feliu JM, Aldaz A, Clavilier J (1990) J Electroanal Chem 290:119–133

    Article  CAS  Google Scholar 

  7. Markovic NM, Gasteiger HA, Ross PN (1995) J Phys Chem 99:3411–3415

    Article  CAS  Google Scholar 

  8. Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333–343

    Article  CAS  Google Scholar 

  9. Rizo R, Herrero E, Feliu JM (2013) Phys Chem Chem Phys 15:15416–15425

    Article  CAS  Google Scholar 

  10. Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Phys Chem Chem Phys 10:3689–3698

    Article  Google Scholar 

  11. Grozovski V, Solla-Gullon J, Climent V, Herrero E, Feliu JM (2010) J Phys Chem C 114:13802–13812

    Article  CAS  Google Scholar 

  12. Buso-Rogero C, Grozovski V, Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Feliu JM (2013) J Materials Chemistry A 1:7068–7076

    Article  CAS  Google Scholar 

  13. Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Electrochem Commun 6:1080–1084

    Article  CAS  Google Scholar 

  14. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2007) J Phys Chem C 111:14078–14083

    Article  Google Scholar 

  15. López-Cudero A, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2010) J Electroanal Chem 644:117–126

    Article  Google Scholar 

  16. Chumillas S, Busó-Rogero C, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM (2011) Electrochem Commun 13:1194–1197

    Article  CAS  Google Scholar 

  17. Lamy C, Coutanceau C (2012) Catalysts for alcohol-fuelled direct oxidation fuel cells, vol 6. In: Zhao Z-XLaTS (ed) RSC energy and enviroment series

    Google Scholar 

  18. Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Faraday Discuss 140:379–397

    Article  CAS  Google Scholar 

  19. Rodes A, Pastor E, Iwasita T (1994) J Electroanal Chem 376:109–118

    Article  CAS  Google Scholar 

  20. Iwasita T, Pastor E (1994) Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  21. Schmiemann U, Muller U, Baltruschat H (1995) Electrochim Acta 40:99–107

    Article  CAS  Google Scholar 

  22. Wang H, Jusys Z, Behm RJ (2004) J Phys Chem B 108:19413–19424

    Article  CAS  Google Scholar 

  23. Heinen M, Jusys Z, Behm RJ (2010) J Phys Chem C 114:9850–9864

    Article  CAS  Google Scholar 

  24. Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) Phys Chem Chem Phys 11:9114–9123

    Article  CAS  Google Scholar 

  25. Del Colle V, Berna A, Tremiliosi G, Herrero E, Feliu JM (2008) Phys Chem Chem Phys 10:3766–3773

    Article  CAS  Google Scholar 

  26. Del Colle V, Santos V, Tremiliosi-Filho G (2010) Electrocatalysis 1:144–158

    Article  CAS  Google Scholar 

  27. Del Colle V, Souza-Garcia J, Tremiliosi G, Herrero E, Feliu JM (2011) Phys Chem Chem Phys 13:12163–12172

    Article  CAS  Google Scholar 

  28. Souza-Garcia J, Herrero E, Feliu JM (2010) ChemPhysChem 11:1391–1394

    Article  CAS  Google Scholar 

  29. Mello GAB, Farias MJS, Giz MJ, Camara GA (2014) Electrochem Commun 48:160–163

    Article  CAS  Google Scholar 

  30. Tripkovic AV, Popovic KD, Lovic JD (2001) Electrochim Acta 46:3163–3173

    Article  CAS  Google Scholar 

  31. Antolini E, Gonzalez ER (2010) J Power Sources 195:3431–3450

    Article  CAS  Google Scholar 

  32. Spendelow JS, Wieckowski A (2007) Phys Chem Chem Phys 9:2654–2675

    Article  CAS  Google Scholar 

  33. Coutanceau C, Demarconnay L, Lamy C, Leger JM (2006) J Power Sources 156:14–19

    Article  CAS  Google Scholar 

  34. Rao V, Hariyanto C, Cremers C, Stimming U (2007) Fuel Cells 7:417–423

    Article  CAS  Google Scholar 

  35. Busó-Rogero C, Herrero E, Feliu JM (2014) ChemPhysChem 15:2019–2028

    Article  Google Scholar 

  36. Christensen PA, Jones SWM, Hamnett A (2012) J Phys Chem C 116:24681–24689

    Article  CAS  Google Scholar 

  37. López-Atalaya M, Morallón E, Cases F, Vázquez JL, Pérez JM (1994) J Power Sources 52:109–117

    Article  Google Scholar 

  38. Lai SCS, Koper MTM (2009) Phys Chem Chem Phys 11:10446–10456

    Article  CAS  Google Scholar 

  39. Christensen PA, Jones SWM, Hamnett A (2013) Phys Chem Chem Phys 15:17268–17276

    Article  CAS  Google Scholar 

  40. Cherstiouk OV, Simonov PA, Zaikovskii VI, Savinova ER (2003) J Electroanal Chem 554:241–251

    Article  Google Scholar 

  41. Solla-Gullón J, Montiel V, Aldaz A, Clavilier J (2000) J Electroanal Chem 491:69–77

    Article  Google Scholar 

  42. Solla-Gullón J, Montiel V, Aldaz A, Clavilier J (2003) J Electrochem Soc 150:E104–E109

    Article  Google Scholar 

  43. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1926

    Article  CAS  Google Scholar 

  44. Ahmadi TS, Wang ZL, Henglein A, El-Sayed MA (1996) Chem Mater 8:1161–1163

    Article  CAS  Google Scholar 

  45. Daniel M-C, Astruc D (2003) Chem Rev 104:293–346

    Article  Google Scholar 

  46. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM (2008) Phys Chem Chem Phys 10:1359–1373

    Article  Google Scholar 

  47. Chen QS, Solla-Gullon J, Sun SG, Feliu JM (2010) Electrochim Acta 55:7982–7994

    Article  CAS  Google Scholar 

  48. Iwasita T, Nart FC (1997) Prog Surf Sci 55:271–340

    Article  CAS  Google Scholar 

  49. Vidal-Iglesias FJ, Aran-Ais RM, Solla-Gullon J, Herrero E, Feliu JM (2012) ACS Catal 2:901–910

    Article  CAS  Google Scholar 

  50. Arán-Ais RM, Figueiredo MC, Vidal-Iglesias FJ, Climent V, Herrero E, Feliu JM (2011) Electrochim Acta 58:184–192

    Article  Google Scholar 

  51. Zhou Z-Y, Wang Q, Lin J-L, Tian N, Sun S-G (2010) Electrochim Acta 55:7995–7999

    Article  CAS  Google Scholar 

  52. Jeffery DZ, Camara GA (2010) Electrochem Commun 12:1129–1132

    Article  CAS  Google Scholar 

  53. Gomes JF, Tremiliosi-Filho G (2011) Electrocatalysis 2:96–105

    Article  CAS  Google Scholar 

  54. Garsany Y, Singer IL, Swider-Lyons KE (2011) J Electroanal Chem 662:396–406

    Article  CAS  Google Scholar 

  55. Garsany Y, Ge J, St-Pierre J, Rocheleau R, Swider-Lyons KE (2013) ECS Trans 58:3–14

    Article  Google Scholar 

  56. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Anal Chem 82:6321–6328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Ministerio de Economía y Competitividad and Generalitat Valenciana through projects CTQ2013-44083-P and PROMETEOII/2014/013, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrique Herrero or Juan M. Feliu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busó-Rogero, C., Solla-Gullón, J., Vidal-Iglesias, F.J. et al. Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium. J Solid State Electrochem 20, 1095–1106 (2016). https://doi.org/10.1007/s10008-015-2970-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2970-0

Keywords

Navigation