Skip to main content
Log in

Structural studies of self-assembled monolayers of 4-mercaptopyridine on gold electrodes with surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Self-assembled monolayers of 4-mercaptopyridine adsorbed on polycrystalline gold electrodes were investigated with cyclic voltammetry and surface-enhanced Raman spectroscopy (SERS). Within the electrode potential window given by the onset of hydrogen and oxygen evolution results from both methods suggest a perpendicular adsorption geometry with a Au-S bond being the anchoring function. pH effects typical of unbuffered electrolyte solutions related to the adsorbate tautomerism are observed spectroelectrochemically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. 4-(2-mercaptoethyl)pyridinium is equal to 4-(mercaptoethyl)pyridinium); nevertheless, the nomenclature proposed by the latter authors is maintained.

  2. Unfortunately, this report is marred by discrepancies and inconsistencies (e.g., varying and multiple assignments of bands).

  3. This supporting electrolyte was used here because it was also employed in previous analytical studies [5].

  4. The authors appreciated a suggestion by a reviewer addressing this possibility.

References

  1. Damaskin BB, Petrii OA, Batrakov VV (1975) Adsorption organischer Verbindungen an Elektroden. Akademie-Verlag, Berlin

    Google Scholar 

  2. Frumkin AN, Damaskin BB (1964) In: O'M Bockris J, Conway BE (eds) Modern aspects of electrochemistry, vol 3. Butterworth, London, p 149

    Google Scholar 

  3. Finklea HO (1996) In: Bard AJ (ed) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, p 109

    Google Scholar 

  4. Zamborini FP, Crooks RM (1998) Langmuir 14:3279–3286

    Article  CAS  Google Scholar 

  5. Turyan I, Mandler D (1994) Anal Chem 66:58–63

    Article  CAS  Google Scholar 

  6. Finklea HO (2001) In: Meyers RA (ed) Encyclopedia of analytical chemistry, vol 11. John Wiley & Sons, Chichester, p 10090

    Google Scholar 

  7. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  8. Turyan I, Mandler D (1997) Anal Chem 69:894–897

    Article  CAS  Google Scholar 

  9. Gal-Oz R, Burshtain D, Turyan I, Mandler D (2003) J Phys IV 107:801–804

    Google Scholar 

  10. Zhu T, Zhang X, Wang J, Fu XY, Liu ZF (1998) Thin Solid Films 329:595–598

    Article  Google Scholar 

  11. Sawaguchi T, Mizutani F, Yoshimoto S, Taniguchi I (2000) Electrochim Acta 45:2861–2867

    Article  CAS  Google Scholar 

  12. Jin Q, Rodriguez JA, Li CZ, Darici Y, Tao NJ (1999) Surf Sci 425:101–111

    Article  CAS  Google Scholar 

  13. Wan L-J, Hara Y, Noda H, Osawa M (1998) J Phys Chem B 102:5943–5946

    Article  CAS  Google Scholar 

  14. Baunach T, Ivanova V, Scherson DA, Kolb DM (2004) Langmuir 20:2797–2802

    Article  CAS  Google Scholar 

  15. Zhang H, He H-X, Wang J, Liu Z-F (2000) Langmuir 16:4554–4557

    Article  CAS  Google Scholar 

  16. Vericat C, Vela ME, Gago J, Salvarezza RC (2004) Electrochim Acta 49:3643–3649

    Article  CAS  Google Scholar 

  17. Baldwin JA, Vlckova B, Andrews MP, Butler IS (1997) Langmuir 13:3744–3751

    Article  CAS  Google Scholar 

  18. Baldwin JA, Schühler N, Butler IS, Andrews MP (1996) Langmuir 12:6389–6398

    Article  CAS  Google Scholar 

  19. Hu JW, Zhao B, Xu WQ, Li BF, Fan YG (2002) Spectrochim Acta A 58:2827–2834

    Article  Google Scholar 

  20. Jung HS, Kim K, Kim MS (1997) J Mol Struct 407:139–147

    Article  Google Scholar 

  21. Xu H, Tseng CH, Vickers TJ, Mann CK, Schlenoff JB (1994) Surf Sci 311:L707–L711

    Article  CAS  Google Scholar 

  22. Yu HZ, Xia N, Liu ZF (1999) Anal Chem 71:1354–1358

    Article  CAS  Google Scholar 

  23. Gloria D, Gooding JJ, Moran G, Hibbert DB (2011) J Electroanal Chem 656:114–119

    Article  CAS  Google Scholar 

  24. Mosier-Boss PA, Lieberman SH (2003) Langmuir 19:6826–6836

    Article  CAS  Google Scholar 

  25. Sueoka T, Inukai J, Ito M (1993) J Electron Spectrosc Relat Ph 64–5:363–370

    Article  Google Scholar 

  26. Lamp BD, Hobara D, Porter MD, Niki K, Cotton TM (1997) Langmuir 13:736–741

    Article  CAS  Google Scholar 

  27. Zhang HL, Evans SD, Henderson JR, Miles RE, Shen TH (2003) J Phys Chem B 107:6087–6095

    Article  Google Scholar 

  28. Guo H, Ding L, Mo YJ (2011) J Mol Struct 991:103–107

    Article  CAS  Google Scholar 

  29. Jensen RA, Sherin J, Emory SR (2007) Appl Spectrosc 61:832–838

    Article  CAS  Google Scholar 

  30. Chao YW, Zhou Q, Li Y, Yan YR, Wu Y, Zheng JW (2007) J Phys Chem C 111:16990–16995

    Article  CAS  Google Scholar 

  31. Do WH, Lee CJ, Kim DY, Jung MJ (2012) J Industr Engin Chem 18:2141–2146

    Article  CAS  Google Scholar 

  32. Zhang L, Bai Y, Shang ZG, Zhang YK, Mo YJ (2007) J Raman Spectrosc 38:1106–1111

    Article  Google Scholar 

  33. Ji N, Ruan W, Li Z, Wang C, Yang Z, Zhao B (2013) J Raman Spectrosc 44:1–5

    Article  CAS  Google Scholar 

  34. Gan Z, Zhao A, Zhang M, Wang D, Tao W, Guo H, Li D, Li M, Gao Q (2012) J Coll Interf Sci 366:23–27

    Article  CAS  Google Scholar 

  35. Qian Z, Cheng Y, Zhou X, Wu J, Xu G (2013) J Coll Interf Sci 397:103–107

    Article  CAS  Google Scholar 

  36. Wang YX, Liu SS, Gao WT, Li W, Zhang YJ, Yang JH (2012) Superlattices and Microstructures 52:750–758

    Article  CAS  Google Scholar 

  37. Fu X, Jiang T, Zhao Q, Yin H (2012) J Raman Spect 43:1191–1195

    Article  CAS  Google Scholar 

  38. Scott BL, Carron KT (2012) Anal Chem 84:8448–8451

    Article  CAS  Google Scholar 

  39. Pradhan M, Chowdhury J, Sarkar S, Sinha AK, Pal T (2012) J Phys Chem C 116:24301–24313

    Article  CAS  Google Scholar 

  40. Yue W, Yang Y, Wang Z, Chen L, Wong KC, Syed A, Chen Z, Wang X (2012) J Nanosc Nanotechnol 12:3018–3025

    Article  CAS  Google Scholar 

  41. Lombardi JR, Birke RL, Lu TH, Xu J (1986) J Chem Phys 84:4174–4180

    Article  CAS  Google Scholar 

  42. Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Surf Sci 406:9–22

    Article  CAS  Google Scholar 

  43. Allgeyer ES, Pongan A, Browne M, Mason MD (2009) Nano Lett 9:3816–3819

    Article  CAS  Google Scholar 

  44. Stadler J, Schmid T, Opilik L, Kuhn P, Dittrich PS, Zenobi R (2011) Beilstein J Nanotechnol 2:509–515

    Article  CAS  Google Scholar 

  45. Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW (2014) Phys Chem Chem Phys 16:2224–2239

    Article  CAS  Google Scholar 

  46. Yu QM, Braswell S, Christin B, Xu JJ, Wallace PM, Gong H, Kaminsky D (2010) Nanotechnology 21:355301

    Article  Google Scholar 

  47. Gao M, Xing G, Yang J, Yang L, Zhang Y, Liu H, Fan H, Sui Y, Feng B, Sun Y, Zhang Z, Liu S, Li S, Song H (2012) Microchim Acta 179:315–321

    Article  CAS  Google Scholar 

  48. Alonso C, Salomon AB, Gutierrez A, Lopez MF, Escudero ML (1999) Langmuir 15:7014–7021

    Article  CAS  Google Scholar 

  49. McLellan JM, Xiong YJ, Hu M, Xia YN (2006) Chem Phys Lett 417:230–234

    Article  CAS  Google Scholar 

  50. Fu X, Bei F, Wang X, Yang X, Lu L (2009) J Raman Spectrosc 40:1290–1295

    Article  CAS  Google Scholar 

  51. Yang L, Bao Z, Wu Y, Liu J (2012) J Raman Spect 43:848–856

    Article  CAS  Google Scholar 

  52. Gan Z, Zhao A, Zhang M, Wang D, Guo H, Tao W, Gao Q, Mao R, Liu E (2013) J Nanopart Res 15:1954

    Article  Google Scholar 

  53. Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S (2013) Nanoscale 5:2784–2789

    Article  CAS  Google Scholar 

  54. Liu X, Kitamura K, Yu Q, Xu J, Osada M, Takahiro N, Li J, Cao G (2013) Sci Technol Adv Mater 14:055011

    Article  Google Scholar 

  55. Yin A-X, Liu W-C, Ke J, Zhu W, Gu J, Zhang Y-W, Yan C-H (2012) J Am Chem Soc 134:20479–20489

    Article  CAS  Google Scholar 

  56. Islam SK, Tamargo M, Moug R, Lombardi JR (2013) J Phys Chem C 117:23372–23377

    Article  CAS  Google Scholar 

  57. Lou T, Wang Y, Li J, Peng H, Xiong H, Chen L (2011) Anal Bioanal Chem 401:333–338

    Article  CAS  Google Scholar 

  58. Arnolds H, Wattanavichean N, Nichols R (2014) 65th Annual Meeting of the International Society of Electrochemistry, 31 August–5 September 2014, Lausanne, Switzerland

  59. Müller H, Hermann J, Metzler M, Kibler LA, Jacob T (2014) 65th Annual Meeting of the International Society of Electrochemistry, 31 August–5 September 2014, Lausanne, Switzerland

  60. Zhou W, Baunach T, Ivanova V, Kolb DM (2004) Langmuir 20:4590–4595

    Article  CAS  Google Scholar 

  61. Ivanova V, Baunach T, Kolb DM (2005) Electrochim Acta 50:4283–4288

    Article  CAS  Google Scholar 

  62. Mosier-Boss PA, Putnam MD (2013) Anal Chim Acta 801:70–77

    Article  CAS  Google Scholar 

  63. Stelter M (2001) Dissertation. Technische Universität, Chemnitz

    Google Scholar 

  64. Holze R (1988) Surf Sci 202:L612–L620

    Article  CAS  Google Scholar 

  65. Garrell RL, Beer KD, Tanner W (1987) The 1987 Pittsburgh Conference, Atlantic City, NJ, USA, March 9–13, Ext. Abstr. 1025

  66. Beer KD, Tanner W, Garrell RL (1989) J Electroanal Chem 258:313–325

    Article  CAS  Google Scholar 

  67. Burke LD, Moran JM, Nugent PF (2003) J Solid State Electrochem 7:529–538

    Article  CAS  Google Scholar 

  68. Holze R, Fischer G (1989) DECHEMA-Monographie 117:331

    Google Scholar 

  69. Kania S, Holze R (1998) In: Russow J, Sandstede G, Staab R (eds) GDCh-Monographie, vol 14. GDCh, Frankfurt, p 115

    Google Scholar 

  70. Spinner E (1960) J Chem Soc 1960:1237–1242

    Article  Google Scholar 

  71. Spinner E (1963) J Chem Soc 1963:3860–3870

    Article  Google Scholar 

  72. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. John Wiley & Sons, New York

    Google Scholar 

  73. Lord RC, Marston AL, Miller RC (1957) Spectrochim Acta 9:113–125

    Article  CAS  Google Scholar 

  74. Szafranski CA, Tanner W, Laibinis PE, Garrell RL (1998) Langmuir 14:3570–3589

    Article  CAS  Google Scholar 

  75. Szafranski CA, Garrell RL (1991) The 1991 Pittsburgh Conference, Chicago, Ill., USA, March 4–8, Ext. Abs. 743

  76. Joo SW, Han SW, Kim K (2000) J Phys Chem B 104:6218–6224

    Article  CAS  Google Scholar 

  77. Joo SW, Han SW, Kim K (2000) Appl Spectrosc 54:378–383

    Article  CAS  Google Scholar 

  78. Carron KT, Hurley LG (1991) J Phys Chem 95:9979–9984

    Article  CAS  Google Scholar 

  79. Baltruschat H, Staudt N, Heitbaum J (1987) J Electroanal Chem 239:361–374

    Article  Google Scholar 

  80. Bain CD, Troughton EB, Tao Y-T, Evall J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  81. Greenler RG (1966) J Chem Phys 44:310–315

    Article  CAS  Google Scholar 

  82. Moskovits M, DiLella DP, Maynard KJ (1988) Langmuir 4:67–76

    Article  CAS  Google Scholar 

  83. Moskovits M (1982) J Chem Phys 77:4408–4416

    Article  CAS  Google Scholar 

  84. Pemberton JE, Bryant MA, Sobocinski RL, Joa SL (1991) The 1991 Pittsburgh Conference, Chicago, Ill., USA, March 4–8, Abstr. 748

  85. Stoyanov S, Stoyanova T, Antonov L, Karagiannidis P, Akrivos P (1996) Monatsh Chem 127:495–504

    Article  CAS  Google Scholar 

  86. Stoyanov S, Petkov I, Antonov L, Stoyanova T, Karagiannidis P, Aslanidis P (1990) Can J Chem 68:1482–1489

    Article  CAS  Google Scholar 

  87. Takahashi M, Fujita M, Ito M (1985) Surf Sci 158:307–313

    Article  CAS  Google Scholar 

  88. Zamlynny V, Zawisza I, Lipkowski J (2003) Langmuir 19:132–145

    Article  CAS  Google Scholar 

  89. Sumi T, Wano H, Uosaki K (2003) J Electroanal Chem 550–551:321–325

    Article  Google Scholar 

Download references

Acknowledgments

Stimulating discussions with D. Mandler are appreciated. The financial support from the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (Gaduiertenkolleg GRK 829/1) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Additional information

This study is dedicated to Mikhail Vorotyntsev on the occasion of his 70th anniversary in recognition of his numerous contributions to electrochemistry and beyond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bron, M., Holze, R. Structural studies of self-assembled monolayers of 4-mercaptopyridine on gold electrodes with surface-enhanced Raman spectroscopy. J Solid State Electrochem 19, 2673–2682 (2015). https://doi.org/10.1007/s10008-015-2869-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2869-9

Keywords

Navigation