Skip to main content
Log in

Carbon composite-based DNA sensor for detection of bacterial meningitis caused by Neisseria meningitidis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon/1-octadecanethiol-carboxylated multiwalled carbon nanotubes (cMWCNT) composite was used to construct a DNA sensor for detection of human bacterial meningitis caused by Neisseria meningitidis. The carbon composite electrode was used to covalently immobilize 5′-amine-labeled 19-mer single-stranded DNA (ssDNA) probe, which was hybridized with 1.35 × 102–3.44 × 104 pM (0.5–128 ng/5 μl) of single-stranded genomic DNA (ssG-DNA) of N. meningitidis for 10 min at room temperature (RT). The surface topography of the DNA sensor was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) while electrochemically characterized by electrochemical impedance. The immobilization of ssDNA probe and hybridization with ssG-DNA were detected electrochemically by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at RT in 30 min with a response time of 1 min. The DNA sensor showed high pathogenic specificity and can distinguish among complement, noncomplement, one base mismatch, and triple base mismatch oligomer targets. The limit of detection (LOD) and sensitivity of the sensor were approximately 68 pM and 38.095 (μA/cm2)/nM of ssG-DNA, respectively, using DPV. The improved sensitivity and LOD of the sensor can be attributed to the higher efficiency of probe immobilization due to high surface area-to-volume ratio and good electrical activity of cMWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dash SK, Sharma M, Kumar A (2012) In: Houllis G, Karachalios M (eds) Meningitis: Causes, diagnosis and treatment, 1st edn. Nova Science Publishers, New York

    Google Scholar 

  2. Brouwer MC, Tunkel AR, van de Beek D (2010) Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 23:467–492

    Article  CAS  Google Scholar 

  3. Chanteau S, Dartevelle S, Mahamane AE, Djibo S, Boisier P, Nato F (2006) New rapid diagnostic tests for Neisseria meningitidis serogroups A, W135, C, and Y. PLoS Med 3:1579–1586

    Article  CAS  Google Scholar 

  4. Wu HM, Cordeiro SM, Harcourt BH, Carvalho M, Azevedo J, Oliveira TQ et al (2013) Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis. BMC Infect Dis 13:26. doi:10.1186/1471-2334-13-26

    Article  Google Scholar 

  5. Dash SK, Sharma M, Khare S, Kumar A (2012) rmpM gene as a genetic marker for human bacterial meningitis. Cell Mol Biol 58(1):26–30

    CAS  Google Scholar 

  6. Dash SK, Sharma M, Khare S, Kumar A (2013) Quick diagnosis of human brain meningitis using Omp85 gene ampilicon as a genetic marker. Indian J Microbiol 53:238–240

    Article  CAS  Google Scholar 

  7. Wang X, Theodore MJ, Mair R, Trujillo-Lopez E, du Plessis M, Wolter N et al (2012) Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens. J Clin Microbiol 50:702–708

    Article  Google Scholar 

  8. Patnaik S, Dash SK, Sethi D, Kumar A, Gupta KC, Kumar P (2012) Engineered polymer-supported synthesis of 3′-carboxyalkyl-modified oligonucleotides and their applications in the construction of biochips for diagnosis of the diseases. Bioconjug Chem 23:664–670

    Article  CAS  Google Scholar 

  9. Ferraz AS, Belo EF, Coutinho LM, Oliveira AP, Carmo AM, Franco DL et al (2008) Storage and stability of IgG and IgM monoclonal antibodies dried on filter paper and utility in Neisseria meningitidis serotyping by dot–blot ELISA. BMC Infect Dis 8:30. doi:10.1186/1471-2334-8-30

    Article  Google Scholar 

  10. Siddiquee S, Yusof NA, Salleh AB, Tan SG, Bakar FA (2012) Development of electrochemical DNA biosensor for Trichoderma harzianum based on ionic liquid/ZnO nanoparticles/chitosan/gold electrode. J Solid State Electrochem 16:273–282

    Article  CAS  Google Scholar 

  11. Wang Y, Liu H, Wang F, Gao Y (2012) Electrochemical oxidation behavior of methotrexate at DNA/SWCNT/Nafion composite film-modified glassy carbon electrode. J Solid State Electrochem 16:3227–3235

    Article  CAS  Google Scholar 

  12. Sun Q, Zhang S (2012) Electrochemiluminescence DNA sensor based on Ru(bpy)3 2+-doped silica nanoparticle labeling and proximity-dependent surface hybridization assay. J Solid State Electrochem 16:247–252

    Article  CAS  Google Scholar 

  13. Fourati N, Lazerges M, Vedrine C, Fougnion J-M, Zerrouki C, Rousseau L et al (2009) Surface acoustic waves sensor for DNA biosensor development. Sens Lett 7:1–4

    Article  Google Scholar 

  14. Patel MK, Solanki PR, Seth S, Gupta S, Khare S, Kumar A, Malhotra BD (2009) CtrA gene based electrochemical DNA sensor for detection of meningitis. Electrochem Commun 11:969–973

    Article  CAS  Google Scholar 

  15. Patel MK, Solanki PR, Kumar A, Khare S, Gupta S, Malhotra BD (2010) Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens Bioelectron 25:2586–2591

    Article  CAS  Google Scholar 

  16. Dash SK, Sharma M, Khare S, Kumar A (2013) Omp85 DNA sensor for detection of human brain bacterial meningitis. Biotechnol Lett 35:929–935

    Article  CAS  Google Scholar 

  17. Dash SK, Sharma M, Khare S, Kumar A (2013) rmpM DNA sensor for detection of human brain bacterial meningitis in cerebrospinal fluid. Appl Biochem Biotechnol 171:198–208

    Article  CAS  Google Scholar 

  18. Du M, Yang T, Jiao K (2010) Carbon nanotubes/(pLys/dsDNA) n layer-by-layer multilayer films for electrochemical studies of DNA damage. J Solid State Electrochem 14:2261–2266

    Article  CAS  Google Scholar 

  19. Dash SK, Sharma M, Khare S, Kumar A (2014) Carbon-mercaptooctadecane/carboxylated multi-walled carbon nanotubes composite based genosensor for detection of bacterial meningitis. Indian J Microbiol 54:170–177

    Article  CAS  Google Scholar 

  20. Wang F, Xu Y, Wang L, Lu K, Ye B (2011) Immobilization of DNA on a glassy carbon electrode based on Langmuir–Blodgett technique: application to the detection of epinephrine. J Solid State Electrochem 16:2127–2133

    Article  Google Scholar 

  21. Pandey CM, Singh R, Sumana G, Pandey MK, Malhotra BD (2011) Electrochemical DNA sensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. Sensors Actuators B 151:333–340

    Article  CAS  Google Scholar 

  22. Mori Y, Seki M (2007) Synthesis of multi-functionalized ketones through the fukuyama coupling reaction catalyzed by Pearlman’s catalyst: preparation of ethyl 6-oxotridecanoate. Org Synth 84:285–294

    Article  CAS  Google Scholar 

  23. Kumar A, Dash SK, Sharma DP (2012) In: Singh HP, Chowdappa P, Chakroborty BN, Podie AR (eds) Plant fungal disease management. Delhi, Westville Publishers

    Google Scholar 

  24. Herrasti Z, Etxabe I, Mitxelena JM, Martienz MP, Martienz F (2012) Development and integration of an electrochemical system in a LOC device for DNA detection. Procedia Eng 47:25–28

    Article  CAS  Google Scholar 

  25. Fitzpatrick DA, Creevey CJ, McInerney JO (2005) Evidence of Darwinian selection in putative meningococcal vaccine antigens. J Mol Evol 61:90–98

    Article  CAS  Google Scholar 

  26. Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommasen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    Article  CAS  Google Scholar 

  27. Lamas-Ardisanaa PJ, Queipob P, Fanjul-Boladoa P, Costa-García A (2008) Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: optimisation and application in alkaline phosphatase-based assays. Anal Chim Acta 615:30–38

    Article  Google Scholar 

  28. Park SH, Jin SH, Jun GH, Jeon S, Hong SH (2011) Enhanced electrical properties in carbon nanotube/poly(3-hexylthiophene) nanocomposites formed through non-covalent functionalization. Nano Res 4:1129–1135

    Article  CAS  Google Scholar 

  29. Rahman MM, Shiddiky MJ, Rahman MA, Shim YB (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384:159–165

    Article  CAS  Google Scholar 

  30. Zhang J, Lang HP, Yoshikawa G, Gerber C (2012) Optimization of DNA hybridization efficiency by pH-driven nanomechanical bending. Langmuir 28:6494–6501

    Article  CAS  Google Scholar 

  31. Li L, Lin R, He H, Jiang L, Gao M (2013) Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 105:45–51

    Article  CAS  Google Scholar 

  32. Lata S, Batra B, Singala N, Pundir CS (2013) Construction of amperometric l-amino acid biosensor based on l-amino acid oxidase immobilized onto ZnONPs/c-MWCNT/PANI/AuE. Sensors Actuators B 188:1080–1088

    Article  CAS  Google Scholar 

  33. Tang H, Chen J, Cui K, Nie L, Kuang Y, Yao S (2006) Immobilization and electrooxidation of calf thymus deoxyribonucleic acid at alkylamine modified carbon nanotube electrode and its interaction with promethazine hydrochloride. J Electroanal Chem 587:269–275

    Article  CAS  Google Scholar 

  34. Tam PD, Hieu NV, Chien ND, Le A-T, Tuan MA (2009) DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J Immunol Methods 350:118–124

    Article  CAS  Google Scholar 

  35. Kim W-S, Kima HS, Park I-S, Kim Y, Chung K, Lee JK, Sung Y-E (2007) Electrochemical performance of nano-Pt-supported carbon anode for lithium ion batteries. Electrochim Acta 52:4566–4571

    Article  CAS  Google Scholar 

  36. Kobayashi K, Kitagawa S, Ohtani H (2006) Development of capillary column packed with thiol-modified gold-coated polystyrene particles and its selectivity for aromatic compounds. J Chromatogr A 1110:95–101

    Article  CAS  Google Scholar 

  37. Zhenzhen Z, Qishu Q, Xinxin Z, Xue G, Yan W, Chao Y (2009) Preparation and evaluation of octadecanethiol modified gold microspheres in capillary liquid chromatography and pressurized capillary electrochromatography as stationary phase. Chin J Chromatogr 27:431–435

    Google Scholar 

  38. Zhang W, Zhong P, Zheng X, Wang L (2010) An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbonnanotubes. Biosens Bioelectron 42:481–485

    Article  Google Scholar 

  39. Panicker RM, Priya S (2014) Fabrication of flexible conducting thin films of copper-MWCNT from multi-component aqueous suspension by electrodeposition. J Solid State Electrochem 18:487–496

    Article  Google Scholar 

  40. Liu R, Sha M, Jiang S, Luo J, Liu X (2014) A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes. Talanta 120:76–83

    Article  CAS  Google Scholar 

  41. Liu C-C, Sadhasivam S, Savitha S, Lin F-H (2014) Fabrication of multiwalled carbon nanotubes–magnetite nanocomposite as an effective ultra-sensing platform for the early screening of nasopharyngeal carcinoma by luminescence immunoassay. Talanta 122:195–200. doi:10.1016/j.talanta.2014.01.055

    Article  CAS  Google Scholar 

  42. Bonanni A, Pividori MI, del Valle M (2007) Application of the avidin–biotin interaction to immobilize DNA in the development of electrochemical impedance DNA sensors. Anal Bioanal Chem 389:851–861

    Article  CAS  Google Scholar 

  43. Lisdat F, Schafer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  44. Liu X, Luo L, Ding Y, Kang Z, Ye D (2012) Simultaneous determination of l-cysteine and l-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry 86:38–45

    Article  CAS  Google Scholar 

  45. Shahryari Z, Goharrizi AS, Azadi M (2010) Experimental study of methylene blue adsorption from aqueous solutions onto carbon nanotubes. Int J Water Res Environ Eng 2:016–028

    Google Scholar 

  46. Nicholson MM (1954) Diffusion currents at cylindrical electrodes: a study of organic sulphides. J Am Chem Soc 76:2539–2545

    Article  CAS  Google Scholar 

  47. Bond M (2003) Broadening electrochemical horizons: Principles and illustration of voltammetric and related techniques. UK

  48. Zanello P (2003) Inorganic electrochemistry: Theory practice and applications. UK

  49. Jindal K, Tomar M, Gupta V (2012) CuO thin film based uric acid biosensor with enhanced response characteristics. Biosens Bioelectron 38:11–18

    Article  CAS  Google Scholar 

  50. Yoon S-I, Lim M-H, Park S-C, Shin J-S, Kim Y-J (2008) Neisseria meningitidis detection based on a microcalorimetric biosensor with a split-flow microchannel. J Microelectromech Syst 7:590–598

    Article  Google Scholar 

  51. Tak M, Gupta V, Tomar M (2014) Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens Bioelectron 59:200–207

    Article  CAS  Google Scholar 

  52. Loaiza OA, Campuzano S, Pedrero M, Pingarrón JM (2007) DNA sensor based on an Escherichia coli lac Z gene probe immobilization at self-assembled monolayers-modified gold electrodes. Talanta 73:838–844

    Article  CAS  Google Scholar 

Download references

Acknowledgment

S.K. Dash thanks University Grant Commission for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

UV spectra of MWCNT at 190-320 nm A after sonication in H2SO4:HNO3 (3:1, v/v) for 0, 4, 6, 8, 10, and 12 h (a-f), B after sonication in autoclaved ddH2O for 0, 4, 6, 8, and 12 h (a-e) (PDF 81 kb)

Fig. S2

A Cyclic voltammogram of carbon (a) and carbon/ODT-cMWCNT composite (b), B Differential pulse voltammogram of carbon (a) and carbon/ODT-cMWCNT composite (b) (PDF 158 kb)

Fig. S3

Cyclic voltammogram of carbon/ODT-MWCNT/ssDNA (a), after hybridization with 4.3x103 pM of ssG-DNA of N. meningitidis for 2, 5, 10, 15, and 20 min (b-f) (PDF 166 kb)

Fig. S4

A Plot between CV relative I pc with respect to carbon/ODT-MWCNT/ssDNA and different concentrations of hybridizing ssG-DNA (0.0-3.44 × 104 pM) from Fig. 4B inset, inset shows 0.0-5.40 × 102 pM region of the plot for calculation of the slope, sensitivity, and LOD of the sensor using CV. B Plot between DPV relative I p with respect to carbon/ODT-MWCNT/ssDNA and different concentrations of hybridizing ssG-DNA (0.0-3.44 × 104 pM) from Fig. 5A inset, inset shows 0.0-5.40 × 102 pM region of the plot for calculation of slope, sensitivity, and LOD of the sensor using DPV (PDF 218 kb)

Fig. S5

Plot between % I p (DPV) of carbon/ODT-MWCNT/ssDNA and time measured over a period of 180 days at intervals of 15 days, the values shown are averages of three readings taken at same conditions (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S.K., Sharma, M., Kumar, A. et al. Carbon composite-based DNA sensor for detection of bacterial meningitis caused by Neisseria meningitidis . J Solid State Electrochem 18, 2647–2659 (2014). https://doi.org/10.1007/s10008-014-2525-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2525-9

Keywords

Navigation