Skip to main content
Log in

Synthesis of Co–Pd alloys by co-electroreduction of aquachloro-cobalt(II) and palladium(II) complexes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The work presents results of the studies on the synthesis of Co–Pd alloys from acid electrolytes containing chloride ions. The main aim of the tests was to identify reactions responsible for alloy formation and to determine an influence of the electrolysis parameters, i.e. working electrode potential, electrolyte composition and temperature on the composition of the resulted alloy coatings. Electrochemical investigations were performed by applying cyclic voltammetry (CV) combined with electrochemical quartz crystal microbalance (EQCM). The electrolyte composition was selected based on a thermodynamic analysis and spectrophotometric tests which were described in our previous papers [1, 2]. They allowed determination of equilibrium distribution of the metals complex forms and a stability analysis of the electrolyte. The alloys were synthesized within the potential range from −0.7 to −1.1 V. The tests indicate a possibility of alloys synthesis already at the potential range < −0.5 V. The alloys composition was analysed with the use of the EDS technique. The obtained alloys featured Pd content from 0.84 to 71.37 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mech K, Żabiński P, Kowalik R (2013) Co-reduction of electrochemically active [Co(H2O)6]2+ and [CoCl(H2O)5]+ complexes onto gold electrode. J Electrochem Soc 160(6):D246–D250

    Article  CAS  Google Scholar 

  2. Mech K, Żabiński P, Kowalik R, Fitzner K (2013) Kinetics and mechanism of [PdClx(H2O)4 − x]2 − x (x = 3,4) complexes electro-reduction. J Electrochem Soc 160(10):H770–H774

    Article  CAS  Google Scholar 

  3. Zhang L, Lee KC, Zhang JJ (2007) Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts. Electrochim Acta 52(28):7964–7971

    Article  CAS  Google Scholar 

  4. Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem Commun 6(2):105–109

    Article  CAS  Google Scholar 

  5. Liu H, Li W, Manthiram A (2009) Factors influencing the electrocatalytic activity of Pd100−xCox (0 < = x < = 50) nanoalloys for oxygen reduction reaction in fuel cells. Appl Catal B-Environ 90(1–2):184–194

    Article  CAS  Google Scholar 

  6. Di Noto V, Negro E, Lavina S, Gross S, Pace G (2007) Pd–Co carbon-nitride electrocatalysts for polymer electrolyte fuel cells. Electrochim Acta 53(4):1604–1617

    Article  Google Scholar 

  7. Zuluaga S, Stolbov S (2011) Factors controlling the energetics of the oxygen reduction reaction on the Pd–Co electro-catalysts: insight from first principles. J Chem Phys 135(13):134702

    Article  Google Scholar 

  8. Wang WM, Zheng D, Du C, Zou ZQ, Zhang XG, Xia BJ, Yang H, Akins DL (2007) Carbon-supported Pd–Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167(2):243–249

    Article  CAS  Google Scholar 

  9. Suo YG, Zhuang L, Lu JT (2007) First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew Chem Int Edit 46(16):2862–2864

    Article  CAS  Google Scholar 

  10. Takata FM, Sumodjo PTA (2007) Electrodeposition of magnetic CoPd thin films: Influence of plating condition. Electrochim Acta 52(20):6089–6096

    Article  CAS  Google Scholar 

  11. Żabiński P, Mech K, Kowalik R (2013) Electrocatalytically active Co–W and Co–W–C alloys electrodeposited in a magnetic field. Electrochim Acta 104:542–548

    Article  Google Scholar 

  12. Gomez E, Ramirez J, Valles E (1998) Electrodeposition of Co–Ni alloys. J Appl Electrochem 28(1):71–79

    Article  CAS  Google Scholar 

  13. Rashwan SM (1999) Electrodeposition of Co–Ni alloys from citrate bath onto steel substrate. Metall 53(12):686–691

    CAS  Google Scholar 

  14. Żabiński P, Mech K, Kowalik R (2012) Hydrogen evolution on binary and ternary cobalt alloys deposited with superimposed magnetic field. J Iron Steel Res Int 19:1152–1157

    Google Scholar 

  15. Żabiński PR, Mech K, Kowalik R (2012) Co–Mo and Co–Mo–C alloys deposited in a magnetic field of high intensity and their electrocatalytic properties. Arch Met and Mat 57(1):127–133

    Google Scholar 

  16. Sadakov GA, Mazin AA, Gordienko VV, Urin OV, Golovchanskaya RG (1981) Electrodeposition of Co–Fe alloys from sulfamate electrolytes, their structure and properties. Sov Electrochem 17(12):1512–1515

    Google Scholar 

  17. Mentar L, Khelladi MR, Azizi A, Kahoul A (2012) Influence of organic additives on electrodeposition of Co–Cu alloys from sulphate bath. T I Met Finish 90(2):98–104

    Article  CAS  Google Scholar 

  18. Zana I, Zangari G (2003) Electrodeposition of Co–Pt films with high perpendicular anisotropy. Electrochem Solid St 6(12):C153–C156

    Article  CAS  Google Scholar 

  19. Denbroeder FJA, Donkersloot HC, Draaisma HJG, Dejonge WJM (1987) Magnetic properties and structure of Pd/Co and Pd/Fe multilayers. J Appl Phys 61(8):4317–4319

    Article  CAS  Google Scholar 

  20. Hashimoto S, Ochiai Y, Aso K (1989) Perpendicular magnetic-anisotropy in sputtered CoPd alloy films. Jpn J Appl Phys 1 28(9):1596–1599

    Article  CAS  Google Scholar 

  21. Childress JR, Duvail JL, Jasmin S, Barthelemy A, Fert A, Schuhl A, Durand O, Galtier P (1994) Perpendicular magnetic-anisotropy in CoxPd1-x alloy films grown by molecular beam epitaxy. J Appl Phys 75(10):6412–6414

    Article  CAS  Google Scholar 

  22. Gontarz R, Smardz L, Szymanski B, Juzikis P (1993) Magnetic properties of electrolytic Co–Pd alloy films. J Magn Magn Mater 120(1–3):278–280

    Article  CAS  Google Scholar 

  23. Osaka T, Tominaka S, Momma T (2008) Electrodeposited Pd–Co catalyst for direct methanol fuel cell electrodes: preparation and characterization. Electrochim Acta 53(14):4679–4686

    Article  Google Scholar 

  24. Mech K, Zabinski P, Kowalik R, Tokarski T, Fitzner K (2013) Electrodeposition of Co–Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction. J Appl Electrochem. doi:10.1007/s10800-013-0605-7

    Google Scholar 

  25. Mech K, Żabiński P, Kowalik R, Fitzner K (2013) Analysis of Co–Pd alloys deposition from electrolytes based on [Co(NH3)6]3+ and [Pd(NH3)4]2+ complexes. Electrochim Acta 104:468–473

    Article  CAS  Google Scholar 

  26. Mech K, Żabiński P, Kowalik R, Fitzner K (2012) EQCM, SEC and voltammetric study of kinetics and mechanism of hexaamminecobalt(III) electro-reduction onto gold electrode. Electrochim Acta 81:254–259

    Article  CAS  Google Scholar 

  27. Mech K, Żabiński P, Kowalik R, Fitzner K (2012) Voltammetric study of electro-reduction of tetraamminepalladium(II) onto gold electrode. J Electroanal Chem 685:15–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Polish National Science Centre under grant 2011/01/N/ST5/05509 and Polish Ministry of Science and Higher Education under grant IP2012/001072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mech, K., Boczkal, G., Pałka, P. et al. Synthesis of Co–Pd alloys by co-electroreduction of aquachloro-cobalt(II) and palladium(II) complexes. J Solid State Electrochem 18, 3121–3127 (2014). https://doi.org/10.1007/s10008-013-2363-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2363-1

Keywords

Navigation