Skip to main content
Log in

Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semi-empirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical “stable” state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cronyn JM (1990) The elements of archaeological conservation. Routledge, London

  2. Torgoose S (1982) Stud Conservat 27:97–101

    Google Scholar 

  3. Keene S, Orton C (1985) Stud Conservat 30:136–142

    Google Scholar 

  4. Selwyn L (2004) Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge. Proc. Metal 2004, National Museum of Australia, Canberra, pp 294–306

  5. Scott DA, Eggert G (2009) Iron and steel in art: corrosion, colorants, conservation. Archetype, London

    Google Scholar 

  6. North NA, Pearson C (1978) Stud Conservat 23:174–186

    CAS  Google Scholar 

  7. Gilberg MR, Seeley NJ (1982) Stud Conservat 27:180–184

    Article  CAS  Google Scholar 

  8. Cornell RM, Giovanoli U (1990) Clays Clay Miner 38:469–476

    Article  CAS  Google Scholar 

  9. Scott DA, Seeley NJ (1987) Stud Conservat 32:73–76

    CAS  Google Scholar 

  10. Watkinson D (1996) Chloride extraction from archaeological iron: comparative treatment efficiencies. In: Roy A, Smith P (eds) Archaeological conservation and its consequences. International Institute for Conservation, London, pp 208–212

    Google Scholar 

  11. Watkinson D, Al Zahrani A (2008) The Conservator 31:75–86

    Article  Google Scholar 

  12. Schmutzler B, Eggert G (2010) Simplifying sodium sulphite solutions—the DBU Project Rettung vom dem Rost. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart

  13. Watkinson D (1982) An assessment of the lithium hydroxide treatments for archaeological ironwork. In: Clarke RW, Blackshaw SM (eds) Conservation of iron, maritime monographs and reports of the National Maritime Museum 53, pp 208–213

  14. Wunderlich C-H, Kuhn C, Dröber V, Eggert G, Schleid T (2010) Efficiency of chloride extraction with organic ammonium bases: the Kur-Project “Conservation and Professional Sotrage of Iron Artefacts”. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart

  15. Burshneva S, Smirnova N (2010) Some new advances in alkaline sulphite treatment of archaeological iron. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart

  16. de Vivies P, Cook D, Drews MJ, Gonzalez NG, Mardikian P, Memet JB (2007) Transformation of akaganéite in archaeological iron artefacts using subcritical treatment. In: Degrigny C, Van Langh R, Joosten I, Ankersmit B (eds) Proceedings of the International Conference on Metals Conservation, Amsterdam, Netherlands, pp 17–21

  17. Mardikian P, Gonzalez N, Drews MJ, Nasanen L (2010) The use of subcritical solutions for the stabilization of archaeological iron artifacts. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart

  18. Dalard F, Gourbeyre Y, Degrigny C (2002) Stud Conserv 47:117–121

    CAS  Google Scholar 

  19. Adriaens A, Dowsett M, Leyssens K, Van Gasse B (2007) Anal Bioanal Chem 387:861–868

    Article  CAS  Google Scholar 

  20. Guilminot E, Baron G, Memet JB, Huet N, Le Noc E (2007) Electrolytic treatment of archaeological marine chloride impregnated iron objects by remote control. In: Degrigny C, Van Lang R, Joosten I, Ankersmith B (eds) Metal 07. Proceedings of the Interim meeting of the ICOM-CC Metal WG, vol 3, Amsterdam (the Netherlands). Rijksmuseum Amsterdam, Amsterdam, pp 38–43

  21. Liu J, Li Y, Wu M (2008) Stud Conserv 53:41–48

    Article  CAS  Google Scholar 

  22. Selwyn LS, McKinnon WR, Argyropoulos V (2001) Stud Conservat 46:109–120

    Article  CAS  Google Scholar 

  23. Schmutzler B, Eggert G (2010) The chloride left behind (dis)solving an analytical problem. In: Eggert G, Schmutzler B (eds) Achaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart

  24. Doménech-Carbó A, Lastras M, Rodríguez F, Osete-Cortina L (2013) Microchem J 106:41–50

    Article  Google Scholar 

  25. Scholz F, Meyer B (1992) Chem Soc Rev 23:341–347

    Article  Google Scholar 

  26. Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry, A Series of Advances, vol 20. Marcel Dekker, New York, pp 1–86

  27. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  28. Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical Methods in Archaeometry, Conservation and Restoration. In: Scholz F (ed) Monographs in electrochemistry series. Springer, Berlin

  29. Doménech-Carbó A (2010) J Solid State Electrochem 14:363–379

    Article  Google Scholar 

  30. Doménech-Carbó A (2012) Electrochemical techniques. In: Edwards HGM, Vandenabeele P (eds) Analytical Archaeometry, selected topics, chapter 7. The Royal Society of Chemistry, London

  31. Doménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–631

    Article  Google Scholar 

  32. Doménech-Carbó A (2011) Anal Methods 3:2181–2188

    Article  Google Scholar 

  33. Doménech-Carbó A (2012) Electrochemical analysis: voltammetry of microparticles. In: Dillmann P, Adriaens A, Angelini E, Watkinson D (eds) Corrosion and conservation of cultural heritage metallic artefacts (Chapter II.7). European Federation of Corrosion, Maney, Leeds

  34. Walter GW (1981) J Electroanal Chem 118:259–273

    Article  CAS  Google Scholar 

  35. Murray JN (1997) Progr Org Coat 31:375–391

    Article  CAS  Google Scholar 

  36. Bastidas JM, Polo JL, Cano E, Torres CL, Mora N (2000) Mater Corros 51:712–718

    Article  CAS  Google Scholar 

  37. Bastidas JM, Polo JL, Torres CL, Cano E (2001) Corros Sci 43:269–281

    Article  CAS  Google Scholar 

  38. Alves VA, Brett CMA (2002) Electrochim Acta 47:2081–2091

    Article  CAS  Google Scholar 

  39. Polo JL, Cano E, Bastidas JM (2002) J Electroanal Chem 537:183–187

    Article  CAS  Google Scholar 

  40. Park JJ, Pyun SI (2003) J Solid State Electrochem 7:380–388

    CAS  Google Scholar 

  41. Evesque M, Keddam M, Takenouti H (2004) Electrochim Acta 49:2937–2943

    Article  CAS  Google Scholar 

  42. Li WS, Cai SQ, Luo JL (2004) J Electrochem Soc 151:B220–B226

    Article  CAS  Google Scholar 

  43. Mora N, Cano E, Polo JL, Puente JM, Bastidas JM (2004) Corros Sci 46:563–568

    Article  CAS  Google Scholar 

  44. Chiavari C, Colledan A, Frignani A, Brunoro G (2006) Mater Chem Phys 95:252–259

    Article  Google Scholar 

  45. Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P (2007) Electrochim Acta 52:7760–7769

    Article  CAS  Google Scholar 

  46. Liu W, Zhang H, Qu Z, Zhang Y, Li J (2010) J Solid State Electrochem 14:965–973

    Article  CAS  Google Scholar 

  47. Toledo-Martos LA, Pech-Canul MA (2011) J Solid State Electrochem 15:1927–1934

    Article  Google Scholar 

  48. Cano E, Lafuente D, Bastidas DM (2010) J Solid State Electrochem 14:381–391

    Article  CAS  Google Scholar 

  49. Grassini S, Angelini E, Parvis M, Bouchar M, Dillmann P, Neff D (2013) Appl Phys A. doi:10.1007/s00339-013-7724-1

    Google Scholar 

  50. Hernandez-Escampa M, Gonzalez J, Uruchurtu-Chavarin J (2010) J Appl Electrochem 40:345–356

    Article  CAS  Google Scholar 

  51. Young L (1961) Anodic oxide films. Academic, New York

    Google Scholar 

  52. Rosas-Camacho O, Urquidi-Macdonald M, Macdonald DD (2009) ECS Trans 19:143–165

    Article  CAS  Google Scholar 

  53. Macdonald DD, Engelhardt GL (2010) ECS Trans 28:123–144

    Article  CAS  Google Scholar 

  54. Sharifi-Asl F, Taylor ML, Lu Z, Engelhardt GL, Kursten B, Macdonald DD (2013) Electrochim Acta 102:161–173

    Article  CAS  Google Scholar 

  55. Macdonald DD (2011) Electrochim Acta 56:1761–1772

    Article  CAS  Google Scholar 

  56. Macdonald DD, Sikora A, Engelhardt G (1998) Electrochim Acta 43:87–107

    Article  CAS  Google Scholar 

  57. Grygar T (1996) J Electroanal Chem 405:117–125

    Article  Google Scholar 

  58. Grygar T (1997) J Solid State Electrochem 1:77–82

    Article  CAS  Google Scholar 

  59. Xu J, Huang W, McCreery RL (1996) J Electroanal Chem 410:235–242

    Article  Google Scholar 

  60. Kuang F, Zhang D, Li Y, Wan Y, Hou B (2009) J Solid State Electrochem 13:385–390

    Article  CAS  Google Scholar 

  61. Chen G, Waraksa CC, Cho H, Macdonald DD, Mallouk TE (2003) J Electrochm Soc 150:E423–E428

    Article  CAS  Google Scholar 

  62. Rimmer M, Watkinson D, Wang Q (2012) Stud Conservat 57:29–41

    Article  CAS  Google Scholar 

  63. Poljacek SM, Risovic D, Cigula T, Gojo M (2012) J Solid State Electrochem 16:1077–1089

    Article  CAS  Google Scholar 

  64. Sluythers-Rehnach M (1994) Pure Appl Chem 66:1831–1891

    Article  Google Scholar 

  65. Boukamp BA, Bouwmeester HJM (2003) Solid State Ionics 157:29–33

    Article  CAS  Google Scholar 

  66. Ibrahim MAM, Pongkao D, Yoshimura M (2002) J Solid State Electrochem 2002(6):341–350

    Google Scholar 

  67. Xia Z, Nanjo H, Aizawa T, Kanakubo M, Fujimura M, Onagawa J (2007) Surf Sci 601:5133–5141

    Article  CAS  Google Scholar 

  68. Lee S-J, Pyun S-I (2007) J Solid State Electrochem 11:829–839

    Article  CAS  Google Scholar 

  69. Raistrick ID (1990) Electrochim Acta 35:1579–1586

    Article  CAS  Google Scholar 

  70. Doménech-Carbó A, Doménech-Carbó MT, Peiró MA (2011) Electroanalysis 23:1391–1400

    Article  Google Scholar 

  71. Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2012) Electroanalysis 24:1945–1955

    Article  Google Scholar 

  72. Mutombo P, Hackerman N (1997) J Solid State Electrochem 1:194–198

    Article  CAS  Google Scholar 

  73. Fetisov VB, Ermakov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KZ (2004) J Solid State Electrochem 8:565–571

    Article  CAS  Google Scholar 

  74. Venkatram MS, Cole IS, Emmanuel B (2011) Electrochim Acta 56:8192–8203

    Article  Google Scholar 

  75. Turgoose S (1993) Structure, composition and deterioration of unearthed iron objects. In: Current problems in the conservation of metal antiquities. Tokyo National Research Institute of Cultural Properties, Tokyo, pp 35–52

Download references

Acknowledgments

Financial support from the MEC Project CTQ2011-28079-CO3-02 which is supported with ERDF funds is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doménech-Carbó, A., Lastras, M., Rodríguez, F. et al. Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. J Solid State Electrochem 18, 399–409 (2014). https://doi.org/10.1007/s10008-013-2232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2232-y

Keywords

Navigation