Skip to main content
Log in

Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammetry of microparticles, an electrochemical methodology based on the record of the voltammetric response of sparingly soluble solids mechanically transferred to the surface of inert electrodes in contact with suitable electrolytes, is able to provide significant analytical information in the fields of conservation and restoration of cultural goods. Using this methodology, identification, speciation, and relative and absolute quantification of analytes from works of art samples can be achieved. Applications to the analysis of organic and inorganic pigments in paints, fibbers, ceramic materials as well as alteration compounds in paintings and metallic artifacts are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Doménech A, Doménech MT, Costa V (2009) Electrochemical methods in archeometry, conservation and restoration. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin

    Google Scholar 

  2. Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71–72

    CAS  Google Scholar 

  3. Scholz F, Nitschke L, Henrion G, Damaschun F (1989) Naturwiss 76:167–168

    CAS  Google Scholar 

  4. Kuwana T, French WG (1964) Anal Chem 36:241–242

    CAS  Google Scholar 

  5. Schultz FA, Kuwana T (1965) J Electroanal Chem 10:95–103

    CAS  Google Scholar 

  6. Bauer D, Gaillochet MP (1974) Electrochim Acta 19:597–606

    CAS  Google Scholar 

  7. Lamache M, Bauer D (1979) Anal Chem 51:1320–1322

    CAS  Google Scholar 

  8. Brainina KhZ, Lesunova RP (1974) Zhurnal Analiticheskoi Khimii 29:1302–1308

    CAS  Google Scholar 

  9. Brainina KhZ, Vidrevich MB (1981) J Electroanal Chem 121:1–28

    CAS  Google Scholar 

  10. Scholz F, Lange B (1992) Trends Anal Chem 11:359–367

    CAS  Google Scholar 

  11. Scholz F, Meyer B (1994) Chem Soc Rev 23:341–347

    CAS  Google Scholar 

  12. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol. 20. Marcel Dekker, New York, pp 1–86

    Google Scholar 

  13. Grygar T, Marken F, Schröder U, Scholz F (2002) Collect Czechoslov Chem Commun 67:163–208

    CAS  Google Scholar 

  14. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  15. Hermes M, Scholz F (2009) Solid state electrochemical reactions of electroactive micro- and nano-particles in a liquid electrolyte environment. In: Kharton VV (ed) Handbook of solid state electrochemistry. Wiley, New York

    Google Scholar 

  16. Lange B, Scholz F, Weuiss A, Schwedt G, Behnert J, Raezke KP (1993) Int Lab 23:23–26

    Google Scholar 

  17. Doménech A, Doménech MT, Gimeno JV, Peris V, Bosch F (1998) Electrochemical identification of dyes, bindings and terpenic resins in work of art samples by voltammetric methods. In: Pandalai G (ed) Recent research developments in pure & applied analytical chemistry, vol 1. Transworld Research Network, Trivandrum, pp 207–224

    Google Scholar 

  18. Doménech A, Doménech MT, Moyá M, Gimeno JV, Bosch F (2000) Anal Chim Acta 407:275–289

    Google Scholar 

  19. Doménech A, Doménech MT, Gimeno JV, Bosch F, Saurí MC, Sánchez S (2001) Analyst 126:1764–1722

    Google Scholar 

  20. Grygar T, Bezdicka P, Hradil D, Doménech A, Marken F, Pikna L, Cepria G (2002) Analyst 127:1100–1107

    CAS  Google Scholar 

  21. Grygar T, Hradilova J, Hradil D, Bezdicka P, Bakardjieva S (2003) Anal Bioanal Chem 375:1154–1160

    CAS  Google Scholar 

  22. Doménech A, Doménech MT, Mas X (2007) Talanta 71:1569–1579

    Google Scholar 

  23. Scholz F, Nitschke L, Henrion G (1989) Fresenius Z Anal Chem 334:56

    CAS  Google Scholar 

  24. Jaworski A, Stojek Z, Scholz F (1993) J Electroanal Chem 354:1

    CAS  Google Scholar 

  25. Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) J Chem Soc Perkin Trans 2:1735

    Google Scholar 

  26. Komorsky-Lovric S, Mirceski V, Scholz F (1999) Mikrochim Acta 132:67

    CAS  Google Scholar 

  27. Doménech A, Doménech MT, Saurí MC, Gimeno JV, Bosch F (2003) Anal Bioanal Chem 375:1169–1175

    Google Scholar 

  28. Grygar T, Kuckova S, Hradil D, Hradilova D (2003) J Solid State Electrochem 7:706–713

    CAS  Google Scholar 

  29. Doménech A, Doménech MT, Saurí MC (2005) Talanta 66:769–782

    Google Scholar 

  30. Doménech A, Doménech MT, Saurí MC, Gimeno JV, Bosch F (2005) Microchim Acta 152:75–84

    Google Scholar 

  31. Doménech A, Doménech MT, Osete L (2001) Electroanalysis 13:927–935

    Google Scholar 

  32. Doménech A, Doménech MT, Osete L, Gimeno JV, Bosch F, Mateo R (2002) Talanta 56:161–174

    Google Scholar 

  33. Doménech A, Doménech MT (2005) Electroanalysis 17:1959–1969

    Google Scholar 

  34. Doménech MT, Doménech A, Yusá DJ, Ahmadi H (2008) J Cult Herit 9:50–54

    Google Scholar 

  35. Doménech A, Doménech MT, Osete L (2004) Electrochemistry of archaeological metals: an approach from the voltammetry of microparticles. In: Brillas E, Cabot PL (eds) Trends in electrochemistry and corrosion at the beginning of the 21st century. Universitat de Barcelona, Barcelona, pp 857–871

    Google Scholar 

  36. Doménech MT, Doménech A, Osete L, Saurí MC (2006) Microchim Acta 154:23–142

    Google Scholar 

  37. Doménech A, Doménech MT, Osete L (2008) Int J Electrochem Sci 2:600–621

    Google Scholar 

  38. Doménech A, Doménech MT, Moyá M, Gimeno JV, Bosch F (2000) Electroanalysis 12:120–127

    Google Scholar 

  39. Doménech A, Sánchez S, Doménech MT, Gimeno JV, Bosch F, Yusá DJ, Saurí MC (2002) Electroanalysis 14:685–696

    Google Scholar 

  40. Sánchez S, Bosch F, Gimeno JV, Yusá DJ, Doménech A (2002) Anal Bioanal Chem 373:893–900

    Google Scholar 

  41. Costa V (2001) The deterioration of silver alloys and some aspects of their conservation. Reviews in Conservation 2:19–35

    Google Scholar 

  42. Costa V, Urban F (2005) Lead and its alloys: metallurgy, deterioration and conservation. Reviews in Conservation, International Institute of Conservation 6:48–62

    CAS  Google Scholar 

  43. Costa V, Texier A, de Reyer D (2006) Impact of environmental conditions on metallic artefacts from the treasure rooms of Reims Cathedral. In: Fort R, Alvarez de Buergo M, Gomez Heras M, Vazquez-Clavo C (eds) Heritage, weathering and conservation. Taylor & Francis Group, London, pp 453–456

    Google Scholar 

  44. Costa V, Dubus M (2007) Impact of the environmental conditions on the conservation of metal artifacts: an evaluation using electrochemical techniques. In: Padfield T (ed) Museum microclimates. The National Museum of Denmark, Copenhagen, pp 63–65

    Google Scholar 

  45. Scholz F, Lange B, Jaworski A, Pelzer J (1991) Fresenius J Anal Chem 340:140–144

    CAS  Google Scholar 

  46. Grygar T, van Oorschot IHM (2002) Electroanalysis 14:39–344

    Google Scholar 

  47. Doménech A, Doménech MT, Osete L, Gimeno JV, Ramos S, Bosch F (2003) Electroanalysis 15:1465–1475

    Google Scholar 

  48. Cepriá G, García-Gareta E, Pérez-Arantegui J (2005) Electroanalysis 17:1078–1084

    Google Scholar 

  49. Doménech A, Moyá M, Doménech MT (2004) Anal Bioanal Chem 380:146–156

    Google Scholar 

  50. Doménech A, Sánchez S, Yusá DJ, Moyá M, Gimeno JV, Bosch F (2004) Anal Chim Acta 501:103–111

    Google Scholar 

  51. Bosch F, Doménech A, Doménech MT, Gimeno JV (2007) Electroanalysis 19:1575–1584

    Google Scholar 

  52. Lovric M, Scholz F (1997) J Solid State Electrochem 1:108–113

    CAS  Google Scholar 

  53. Lovric M, Hermes M, Scholz F (1998) J Solid State Electrochem 2:401–404

    CAS  Google Scholar 

  54. Oldham KB (1998) J Solid State Electrochem 2:367–377

    CAS  Google Scholar 

  55. Lovric M, Scholz F (1999) J Solid State Electrochem 3:172–175

    CAS  Google Scholar 

  56. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) J Solid State Electrochem 4:314–324

    Google Scholar 

  57. Doménech A, Doménech MT (2006) J Solid State Electrochem 10:949–958

    Google Scholar 

  58. Doménech A, Doménech MT (2008) Electrochem Commun 10:1238–1241

    Google Scholar 

  59. Lovric M, Hermes M, Scholz F (2000) J Solid State Electrochem 4:394–401

    CAS  Google Scholar 

  60. Meyer B, Ziemer B, Scholz F (1995) J Electroanal Chem 392:79–83

    Google Scholar 

  61. Hasse U, Scholz F (2001) Electrochem Commun 3:429–434

    CAS  Google Scholar 

  62. Wang J (1985) Stripping analysis. VCH, Weinheim

    Google Scholar 

  63. Bard AJ, Inzelt G, Scholz F (eds) (2008) Electrochemical dictionary. Springer, Berlin

  64. Mouhandess MT, Chassagneux F, Vittori O (1982) J Electroanal Chem 131:367–371

    CAS  Google Scholar 

  65. Mouhandess MT, Chassagneux F, Vittori O, Accary A, Reeves RM (1984) J Electroanal Chem 181:93–105

    CAS  Google Scholar 

  66. Mancey DS, Shoesmith DW, Lipkowski J, McBride AC, Noel J (1993) J Electrochem Soc 140:637–642

    CAS  Google Scholar 

  67. Encinas-Bachiller P, Tascón-García ML, Vázquez-Barbado MD, Sánchez-Batanero P (1994) J Electroanal Chem 371:161–166

    Google Scholar 

  68. Grygar T (1996) J Electroanal Chem 405:117–125

    Google Scholar 

  69. Grygar T (1997) J Solid State Electrochem 1:77–82

    CAS  Google Scholar 

  70. Lorenzo L, Encinas P, Tascón ML, Vázquez MD, de Francisco C, Sánchez-Batanero P (1997) J Solid State Electrochem 1:232–240

    CAS  Google Scholar 

  71. Grygar T (1998) J Solid State Electrochem 2:127–136

    CAS  Google Scholar 

  72. Doménech A, Doménech MT, Mas X, Ciarrocci J (2007) Arche 2:121–124

    Google Scholar 

  73. Doménech A, Roig JL, Doménech MT (2006) Arche 1:167–170

    Google Scholar 

  74. Doménech A, Doménech MT, Edwards HGM (2007) Electroanalysis 19:1890–1900

    Google Scholar 

  75. Doménech A, Doménech MT, Edwards HGM (2008) Anal Chem 80:2704–2716

    Google Scholar 

  76. Doménech A, Doménech MT, Martínez I (2008) Microchim Acta 162:351–359

    Google Scholar 

  77. Erhardt D, Tumosa CS, Mecklenburg MF (2005) Stud Conserv 50:143–150

    Google Scholar 

  78. van der Weerd J, van Loon A, Boon JJ (2005) Stud Conserv 50:3–22

    Google Scholar 

  79. Colombini MP, Modugno F, Giacomelli A (1999) J Chromatogr A 846:101–111

    CAS  Google Scholar 

  80. Scott DA, Dodd LS, Furihata J, Tamimoto S, Keeney J, Schilling MR, Cowan R (2004) Stud Conserv 49:177–187

    Article  CAS  Google Scholar 

  81. Kuckova S, Nemec I, Hynek R, Hradilova J, Grygar T (2005) Anal Bioanal Chem 382:275–282

    CAS  Google Scholar 

  82. Meilunas RJ, Bentsen JG, Steinberg A (1990) Stud Conserv 35:33–52

    CAS  Google Scholar 

  83. Boon JJ, Peulvé SL, van den Brink OF, Duursma MC, Rainford D (1996) Molecular aspects of mobile and stationary phases in ageing tempera and oil paint films. In: Bakkenist T, Hoppenbrouwers R, Dubois H (eds) Early Italian painting techniques and analysis. Limburg Conservation Institute, Maastricht, pp 35–56

    Google Scholar 

  84. Doménech A, Doménech MT, Ciarrocci J, Cialei V, Monteagudo A (2006) Arche 1:171–176

    Google Scholar 

  85. Scholz F, Hermes M (1999) Electrochem Commun 1:345-348. See corrigendum (2000) in Electrochem Commun 2:814

  86. Doménech A, Formentín P, García H, Sabater MJ (2000) Eur J Inorg Chem 2000:1339–1344

    Google Scholar 

  87. Reyes-Valerio C (1993) De Bonampak al Templo Mayor: el azul Maya en Mesoamérica. Siglo XXI, México

    Google Scholar 

  88. Torres LM (1988) Maya Blue: how the Mayas could have made the pigment. Mat Issues Art Archaeol 123:123–128

    CAS  Google Scholar 

  89. Romero P, Sánchez C (2005) New J Chem 29:57–58

    Google Scholar 

  90. Gettens RJ (1962) Am Antiq 27:565–566

    Google Scholar 

  91. Shepard AO (1962) Am Antiq 27:565–566

    CAS  Google Scholar 

  92. Van Olphen H (1967) Science 154:465–467

    Google Scholar 

  93. Kleber R, Masschelein-Kleiner L, Thissen J (1967) Stud Conserv 12:41–56

    CAS  Google Scholar 

  94. Arnold DE, Bohor BF (1975) Archaeology 28:22–29

    Google Scholar 

  95. Arnold DE, Branden JR, Williams PR, Feinman GM, Brown JP (2008) Antiquity 82:152–164

    Google Scholar 

  96. José-Yacamán M, Rendón L, Arenas J, Serra Puche MC (1996) Science 273:223–224

    Google Scholar 

  97. Hubbard B, Kuang W, Moser A, Facey GA, Detellier C (2003) Clays Clay Miner 51:318–326

    CAS  Google Scholar 

  98. Fois E, Gamba A, Tilocca A (2003) Micropor Mesopor Mat 57:263–272

    CAS  Google Scholar 

  99. Reinen D, Köhl P, Müller C (2004) Zeitsch Anorg Allgem Chem 630:97–103

    CAS  Google Scholar 

  100. Sánchez del Río M, Martinetto P, Somogyi A, Reyes-Valerio C, Dooryhée E, Peltier N, Alianelli L, Moignard B, Pichon L, Calligaro T, Dran J-C (2004) Spectrochim Acta Part B 59:1619–1625

    Google Scholar 

  101. Vandenabeele P, Bodé S, Alonso A, Moens L (2005) Spectrochim Acta Part A 61:2349–2356

    CAS  Google Scholar 

  102. Giustetto R, LLabrés i Xamena FX, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) J Phys Chem B 109:19360–19368

    CAS  Google Scholar 

  103. Ovarlez S, Chaze A-M, Giulieri F, Delamare F (2006) Compt Rend Chim 9:1243–1248

    CAS  Google Scholar 

  104. Sánchez del Río M, Martinetto P, Reyes-Valerio C, Dooryhée E, Suárez M (2006) Archaeometry 48:115–130

    Google Scholar 

  105. Doménech A, Doménech MT, Vázquez de Agredos Pascual ML (2006) J Phys Chem B 110:6027–6039

    Google Scholar 

  106. Doménech A, Doménech MT, Vázquez de Agredos Pascual ML (2007) J Phys Chem C 111:4585–4595

    Google Scholar 

  107. Doménech A, Doménech MT, Vázquez de Agredos Pascual ML (2007) Anal Chem 79:2812–2821

    Google Scholar 

  108. Doménech A, Doménech-Carbó MT, de Agredos V, Pascual ML (2007) J. J Solid State Electrochem 11:1135–1146

    Google Scholar 

  109. Doménech A, Doménech MT, Vázquez ML (2009) Archaeometry (in press)

  110. Doménech A, Doménech MT, Sánchez del Río M, Vázquez ML (2009) J Solid State Electrochem 13:869–878

    Google Scholar 

  111. Doménech A, Doménech MT, Sánchez del Río, M, Vázquez ML, Lima E (2009) New J Chem (in press)

  112. Turro NJ, García-Garibay M (1991) In: Ramamurthy V (ed) Photochemistry in organized media. VCH, New York, pp 1–38

    Google Scholar 

  113. Bessel CA, Rolison DR (1997) J Phys Chem B 101:1148–1157

    CAS  Google Scholar 

  114. Doménech A, García H, Alvaro M, Carbonell E (2003) J Phys Chem B 107:3040–3050

    Google Scholar 

  115. Doménech A, García H, Casades I, Esplá M (2004) J Phys Chem B 108:20064–20075

    Google Scholar 

  116. Genestar C, Pons C (2005) Anal Bioanal Chem 382:269–274

    CAS  Google Scholar 

  117. Pomies MP, Menu M (1999) Archaeometry 41:275–285

    CAS  Google Scholar 

  118. Zhang S, Meyer B, Moh GH, Scholz F (1995) Electroanalysis 7:319–328

    CAS  Google Scholar 

  119. Scholz F, Müller WD, Nitschke L, Rabi F, Livanova L, Fleischfresser C, Thierfelder Ch (1990) Fresenius J Anal Chem 338:37–40

    CAS  Google Scholar 

  120. Scholz F, Rabi F, Müller WD (1992) Electroanalysis 4:339–346

    CAS  Google Scholar 

  121. Meyer B, Zhang S, Scholz F (1996) Fresenius J Anal Chem 356:267–270

    CAS  Google Scholar 

  122. Scholz F, Lange B, Jaworski A, Pelzer J (1991) Fresenius J Anal Chem 340:140–144

    CAS  Google Scholar 

  123. Doménech A, Doménech MT, Gimeno JV, Bosch F, Saurí MC, Casas MJ (2001) Fresenius J Anal Chem 369:576–581

    Google Scholar 

  124. Reinmuth WH (1960) Anal Chem 32:1891–1892

    CAS  Google Scholar 

  125. Buck RP (1964) Anal Chem 36:947–949

    CAS  Google Scholar 

  126. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York, pp 521–525

    Google Scholar 

  127. Ramaley L, Krause MS Jr (1969) Anal Chem 41:1362–1365

    CAS  Google Scholar 

  128. Krause MS Jr, Ramaley L (1969) Anal Chem 41:1365–1369

    CAS  Google Scholar 

  129. Lovric M, Komorsky-Lovric S (1988) J Electroanal Chem 248:239–253

    CAS  Google Scholar 

  130. Lovric M, Komorsky-Lovric S, Bond AM (1991) J Electroanal Chem 319:1–18

    CAS  Google Scholar 

  131. Komorsky-Lovric S, Lovric M, Bond AM (1992) Anal Chim Acta 258:299–305

    CAS  Google Scholar 

  132. Kroner S, Mas X, Doménech MT, Doménech A (2007) Arche 2:83–88

    Google Scholar 

  133. Doménech MT, Casas MJ, Doménech A, Mateo R, Gimeno JV, Bosch F (2001) Fresenius J Anal Chem 369:571–575

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doménech-Carbó, A. Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. J Solid State Electrochem 14, 363–379 (2010). https://doi.org/10.1007/s10008-009-0858-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0858-6

Keywords

Navigation