Skip to main content
Log in

Intermittent operation of the aprotic Li-O2 battery: the mass recovery process upon discharge interval

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The intermittent operation of the aprotic Li-O2 battery is systematically studied in this paper. A combined study of the battery charge retention and the electrolyte stability to O2 suggests a low self-discharge rate of the Li-O2 battery, which is a prerequisite to achieve desirable intermittent discharge performance. The battery under intermittent operation exhibits significantly improved discharge performance as compared to the continuously discharged one. It is found that the capacity output is directly associated with the time interval between two discharge steps and with the capacity limit for each discharge step. The open-circuit potential and linear scan voltammetry analyses confirm that a “mass recovery” process, corresponding to the concentration relaxation of the oxygen which is available at the cathode, proceed during the discharge intervals. In the “mass recovery” process, an increased amount of O2 homogeneously redistributes at the electrolyte/carbon interface at both sides of the electrode, which relieves the O2 transport limit, enhances the availability of O2 and the utilization of carbon material for the cathode, and thus significantly improves the discharge performance of the aprotic Li-O2 battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  2. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novak P, Bruce PG (2011) J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  3. Freunberger SA, Chen YH, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) Angew Chem Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  4. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  5. Bryantsev VS, Faglioni F (2012) J Phys Chem A 116:7128–7138

    Article  CAS  Google Scholar 

  6. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2:1161–1166

    Article  CAS  Google Scholar 

  7. McCloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) J Phys Chem Lett 3:3043–3047

    Article  CAS  Google Scholar 

  8. Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang JG (2011) J Power Sources 196:9631–9639

    Article  CAS  Google Scholar 

  9. Xu W, Hu J, Engelhard MH, Towne SA, Hardy JS, Xiao J, Feng J, Hu MY, Zhang J, Ding F, Gross ME, Zhang JG (2012) J Power Sources 215:240–247

    Article  CAS  Google Scholar 

  10. Ryan KR, Trahey L, Ingram BJ, Burrell AK (2012) J Phys Chem C 116:19724–19728

    Article  CAS  Google Scholar 

  11. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  12. Giordani V, Freunberger SA, Bruce PG, Tarascon JM, Larcher D (2010) Electrochem Solid-State Lett 13:A180–A183

    Article  CAS  Google Scholar 

  13. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) J Phys Chem Lett 3:997–1001

    Article  CAS  Google Scholar 

  14. Xu W, Viswanathan VV, Wang DY, Towne SA, Xiao J, Nie ZM, Hu DH, Zhang JG (2011) J Power Sources 196:3894–3899

    Article  CAS  Google Scholar 

  15. Harding JR, Lu YC, Tsukada Y, Horn YS (2012) Phys Chem Chem Phys 14:10540–10546

    Article  CAS  Google Scholar 

  16. Song M, Zhu D, Zhang L, Wang XF, Huang LH, Shi QW, Mi R, Liu H, Mei J, Lau LWM, Chen YG (2013) J Solid State Electrochem doi:10.1007/s10008-013-2067-6

  17. Kowalczk I, Read J, Salomon M (2007) Pure Appl Chem 79:851–860

    Article  CAS  Google Scholar 

  18. Sandhu SS, Fellner JP, Brutchen GW (2007) J Power Sources 164:365–371

    Article  CAS  Google Scholar 

  19. Zhang SS, Foster D, Read J (2010) J Power Sources 195:1235–1240

    Article  CAS  Google Scholar 

  20. Albertus P, Girishkumar G, McCloskey BD, Carrera RSS, Kozinsky B, Christensen J, Luntz AC (2011) J Electrochem Soc 158:A343–A351

    Article  CAS  Google Scholar 

  21. Wang Y (2012) Electrochim Acta 75:239–246

    Article  CAS  Google Scholar 

  22. Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) J Electrochem Soc 150:A1351–A1356

    Article  CAS  Google Scholar 

  23. Read J (2006) J Electrochem Soc 153:A96–A100

    Article  CAS  Google Scholar 

  24. Xu W, Xiao J, Xu K, Wang D, Zhang J, Zhang JG (2010) Electrochem. Solid-State Lett 13:A48–A51

    Article  CAS  Google Scholar 

  25. Xu W, Xiao J, Xu K, Wang D, Zhang J, Zhang JG (2010) J Electrochem Soc 157:A219–A224

    Article  CAS  Google Scholar 

  26. Lu YC, Kwabi DG, Yao KPC, Harding JR, Zhou J, Zuin L, Horn YS (2011) Energy Environ Sci 4:2999–3007

    Article  CAS  Google Scholar 

  27. Zhang SS, Read J (2011) J Power Sources 196:2867–2870

    Article  CAS  Google Scholar 

  28. Wang Y, Zheng D, Yang XQ, Qu D (2011) Energy Environ Sci 4:3697–3702

    Article  CAS  Google Scholar 

  29. Choi NS, Jeong G, Koo B, Lee YW, Lee KT (2013) J Power Sources 225:95–100

    Article  CAS  Google Scholar 

  30. Yang XH, Xia YY (2010) J Solid State Electrochem 14:109–114

    Article  CAS  Google Scholar 

  31. Castillo S, Samala NK, Manwaring K, Izadi B, Radhakrishnan (2004) Proceedings of the International Conference on Embedded Systems and Applications 18–24

  32. Adams J, Karulkar M, Anandan V (2013) J Power Sources 239:132–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Synergistic Innovative Joint Foundation of AEP-SCU (no. 0082604132222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Zhang, L., Song, M. et al. Intermittent operation of the aprotic Li-O2 battery: the mass recovery process upon discharge interval. J Solid State Electrochem 17, 2539–2544 (2013). https://doi.org/10.1007/s10008-013-2116-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2116-1

Keywords

Navigation